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Measures of discrepancy between probability distributions (statistical distance) are widely used in
the fields of artificial intelligence and machine learning. We describe how certain measures of statis-
tical distance can be implemented as numerical diagnostics for simulations involving charged-particle
beams. Related measures of statistical dependence are also described. The resulting diagnostics pro-
vide sensitive measures of dynamical processes important for beams in nonlinear or high-intensity
systems, which are otherwise difficult to characterize. The focus is on kernel-based methods such as
Maximum Mean Discrepancy, which have a well-developed mathematical foundation and reasonable
computational complexity. Several benchmark problems and examples involving intense beams are
discussed. While the focus is on charged-particle beams, these methods may also be applied to other
many-body systems such as plasmas or gravitational systems.

I. INTRODUCTION

When modeling the dynamics of charged particle
beams, the following question often arises. Given two
ensembles of simulation particles, how similar are they?
In particular, when do two particle ensembles represent
the same underlying phase space density? This question
is central to validating the random sampling algorithm
used for initial beam generation, to comparing particle-
based output across multiple simulation codes, to match-
ing the particle beam successfully into a periodic trans-
port system, and for studying the long-time phase space
evolution of beams in circular and multi-pass systems.

Two beams are typically compared using their first and
second moments, followed by qualitative examination of
the beam phase space. For beams at high intensity, in
the presence of collective instabilities, or in the presence
of highly nonlinear transport, the details of the distribu-
tion (including higher-order moments and nonlinear cor-
relations) become increasingly important. Such systems
may exhibit filamentation of the beam phase space, de-
veloping structure on finer and finer scales, in some cases
relaxing to a quasi-stationary state. It is then valuable
to have quantitative particle-based diagnostics that can
characterize the nonlinear dynamical processes of regular
or chaotic mixing and collisionless relaxation [1–6].

These problems can best be addressed by implement-
ing a two-sample measure of statistical distance with
well-understood mathematical properties, which can be
used to compare particle populations. Statistical dis-
tances are widely used in machine learning (ML), in-
formation theory, statistics, probability theory, and data
mining. Unfortunately, such quantities tend to have high
computational complexity. For beam physics applica-
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tions, the complexity must scale well with the number
of particles n (as O(n2) or better) and with the phase
space dimension d (up to at least d = 6).

We describe the kernel-based statistical distance
known as Maximum Mean Discrepancy (MMD) [7],
which has recently had a major impact in the ML commu-
nity. Broadly speaking, kernel methods allow nonlinear
problems involving higher-order statistics to be treated
using linear methods, by embedding the set of probabil-
ity distributions into a reproducing kernel Hilbert space
(RKHS) [8, 9]. We do not discuss the RKHS formal-
ism, although many results are most naturally viewed in
this context. The use of MMD as a statistical distance
leads naturally to a measure of statistical dependence or
correlation, known here as the Hilbert Schmidt Corre-
lation (HSCor) [10]. These two diagnostics can provide
powerful quantitative tools to study the beam dynamics
processes mentioned above.

The structure of this paper is as follows. Section II pro-
vides a brief discussion of the beam physics context and
a summary of notation. In Section III we review several
concepts of statistical distance. Section IV describes the
properties of Maximum Mean Discrepancy and its imple-
mentation in particle-based tracking codes. Section V de-
scribes the properties of the Hilbert Schmidt Correlation
and its corresponding implementation. In Section VI, we
demonstrate how these tools can be used for beam dy-
namics applications, using several benchmark problems
involving symplectic maps. In Section VII, we apply
these tools to examples involving high-intensity beams
with self-consistent space charge. Section VIII contains
a summary and conclusions. There are three Appendices.
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II. BEAM PHYSICS CONTEXT AND
NOTATION

The last two decades have seen increasing progress to-
ward an integrated understanding of the dynamics of
many-particle systems with long-range interactions [11–
13], their kinetic models [14, 15], and issues related to
their asymptotic long-time behavior [16, 17]. Large-scale
numerical simulations of such systems require efficient
statistical tools to characterize their multiscale behav-
ior. In the related field of fluid turbulence, the turbulent
velocity field is characterized using nonlinear statistical
tools such as structure functions [19, 20], rates of en-
tropy production [21], intermittency [22], and multifrac-
tal methods [18]. In this paper, we focus on a subset of
statistical techniques that is especially well-suited to the
dynamics of charged particle beams [23, 24].

Consider a beam consisting of Np identical particles
with charge q and mass m subject to electromagnetic
self-forces and confined by electromagnetic fields. In an
accelerator, such beams are typically localized in space,
guided by multipole magnets and accelerated to rela-
tivistic speeds by radiofrequency (RF) cavities. Each
particle is characterized by its phase space coordinates
X = (x, px, y, py, z, pz), and the ensemble of particles at
time t is described by a probability density ft on the
6-dimensional phase space, satisfying∫

ft(X)dX = 1, ft ≥ 0. (1)

In a collisionless kinetic description, the evolution of ft is
described by the appropriate Vlasov-Poisson or Vlasov-
Maxwell equations, and the condition (1) is preserved
during the beam evolution. In storage rings or circular
colliders, where beams may circulate for thousands to
millions of turns, often one is interested in the long-time
behavior of ft as t→∞.

Typical quantities of interest include measures of the
beam size σx, σy, σz and the beam quality, as character-
ized by the emittances εx, εy, εz, defined by:

σ2
x = 〈∆x2〉, ε2x = 〈∆x2〉〈∆p2

x〉 − 〈∆x∆px〉2, (2)

where ∆x = x − 〈x〉, with corresponding definitions in-
volving y and z. Here 〈·〉 denotes the expected value
with respect to ft. Minimizing the emittance growth of-
ten requires matching the beam to the accelerator focus-
ing fields, finding a t-periodic solution ft whose period
coincides with that of the revolution period.

Such a system is usually modeled by tracking a small
number n << Np of simulated particles along the charac-
teristics of the Vlasov equation, using particle-in-cell or
related algorithms. A fundamental problem is to charac-
terize the behavior of ft using the orbits of the sampled
particles, or to compare ft with a second probability den-
sity based on simulated particle samples. This is often
done by comparing the first and second-order moments of
the phase space coordinates, and quantities such as (2),

as estimated from the particle samples. This character-
ization is sufficient if the beam is well-localized and the
forces are sufficiently linear. In cases of nonlinear trans-
port, statistical methods are required that are capable of
making additional fine-grained distinctions between dis-
tributions.

A. Summary of notation

Because distinct notational conventions appear in
the probability, statistics, kinetic theory and statistical
physics, machine learning, and beam physics literature,
we briefly summarize the conventions used in this paper.

The quantities f , g, and h, with or without subscripts,
will denote probability density functions (e.g., beam dis-
tribution functions) defined on a fixed phase space M
of dimension d. The notation X, X ′, Y , or Y ′ will be
used to represent points of M , especially when these ap-
pear as variables of integration. Integrals are taken over
all space, unless otherwise specified. Similarly, the nota-
tion Xj , Yj (j = 1, 2, . . .) will denote a finite or infinite
sequence of points of M , especially when these appear
within a summation. The notation k will always denote
a kernel function k : M × M → R, as defined in Sec.
III C.

The notation of Sec. V differs slightly from that of
the surrounding sections, in that X and Y , when appear-
ing alone, represent (vector-valued) random variables de-
scribed by a joint probability density PXY , with marginal
densities denoted by PX and PY , respectively.

The problem of interest may now be stated as follows.
We wish to compare two probability density functions
f and g defined on M . This must be done reliably
and efficiently by using only a finite number of points
X1, . . . , Xn ∈ M independently sampled from f , and a
finite number of points Y1, . . . , Ym ∈ M independently
sampled from g.

III. STATISTICAL DISTANCE

Motivated by the considerations of the previous sec-
tion, we wish to define a distance ρ between pairs of
probability densities f and g on the phase space M , such
that ρ satisfies the following natural conditions:

i) non-negativity: ρ(f, g) ≥ 0,

ii) symmetry: ρ(f, g) = ρ(g, f),

iii) the triangle inequality: ρ(f, g) ≤ ρ(f, h) + ρ(h, g)

for any probability density h,

iv) identity: ρ(f, g) = 0 if and only if f = g

(except on a possible set of zero probability).

That is, ρ should define a metric on the set of all proba-
bility densities on M [25].
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The distance should also capture the concept of relax-
ation of beams, so that ft relaxes to feq in the “coarse-
grained” sense if and only if ρ(ft, feq) → 0 as t → ∞.
The concept of relaxation in the “coarse-grained” sense
is well-formalized by the probabilistic concept of weak
convergence [26, 27]: we say ft ⇒ feq if and only if:

lim
t→∞

∫
ft(X)φ(X)dX =

∫
feq(X)φ(X)dX (4)

for each bounded, continuous function φ on the phase
space. Informally, (4) states that the ensemble average
of each well-behaved observable φ must approach the en-
semble average of φ over feq as t→∞. This is a natural
concept of convergence to use when characterizing the
long-time behavior of beams.

The description of the beam as a dynamically evolv-
ing probability density is valid provided that the beam
consists of a single particle species, without charge loss.
In the presence of charge loss, one is often interested in
the behavior of the part of the beam that lies within a
bounded subregion of the phase space. The tools de-
scribed in this paper can also be adapted to treat this
case, using a technique to be described in Section VII.

In the following subsections, we briefly describe several
indicators of statistical distance that are used in ML and
pattern recognition, information science, probability, and
statistics. For a general survey, see for example [28].

A. Kullback-Liebler Divergence

The most widely-used statistical distance is the
Kullback-Liebler (KL) divergence DKL, given by:

DKL(f ||g) =

∫
f(X) log

f(X)

g(X)
dX, (5)

which originated in information theory as a measure of
the relative entropy of one probability density with re-
spect to another [29, 30]. It has the property that
DKL(f ||g) ≥ 0, with equality if and only if f = g. (It
satisfies metric conditions i and iv above.) However, the
integral in (5) is not defined for all pairs of probability
densities f and g, and DKL fails to satisfy conditions ii
and iii, so it is not a metric in the above sense. A sym-
metrized modification of KL divergence is often used [30],
although this quantity does not satisfy condition iii.

Note that DKL is invariant under any symplectic time-
evolution map Mt, since:

DKL(ft||gt) =

∫
ft(X) log

ft(X)

gt(X)
dX (6)

=

∫
f0(M−1

t (X)) log
f0(M−1

t (X))

g0(M−1
t (X))

dX

=

∫
f0(X ′) log

f0(X ′)
g0(X ′)

dX ′ = DKL(f0||g0),

where we used the fact that Mt has Jacobian determi-
nant 1. In particular, if a density feq is invariant under
Mt, in the sense that

feq(M−1
t (X)) = feq(X), (7)

thenDKL(ft||feq) is independent of t. Thus, DKL cannot
capture weak convergence of the form ft ⇒ feq to an
invariant density feq under a symplectic time-evolution.

The KL divergence has been used in kinetic simulations
[31], and it is well-motivated by statistical mechanics con-
siderations. However, typical algorithms for computing
DKL require binning the (possibly highly-filamented) dis-
tribution functions f and g, which becomes increasingly
problematic in a phase space of dimension > 2. Although
gridless two-sample estimation algorithms also exist [32],
the rate of convergence with particle number can be ar-
bitrarily slow, with a convergence rate that varies with
the distribution. This makes the quantity DKL difficult
to estimate reliably from samples, especially in spaces
of high dimension. For recent work using kernel-based
estimators for DKL, see [33].

B. Wasserstein Metric

The p-Wasserstein distance (p = 1, 2, . . .) is defined by:

Wp(f, g) =

(
min
h

∫
|X − Y |ph(X,Y )dXdY

)1/p

(8)

where |X − Y | denotes the Euclidean distance between
points X and Y . Here the minimum is taken [34] over
all joint probability densities h with marginal densities f
and g, so that:

f(X) =

∫
h(X,Y )dY, g(Y ) =

∫
h(X,Y )dX. (9)

The distances Wp originated in the theory of optimal
transport [35–37], where the case p = 1 is also known as
the Kantorovich-Rubinstein metric or the Earth Mover’s
Distance (EMD).

Note that (8) is guaranteed to be finite when the den-
sities f and g both have finite moments of order p. On
the set of all such densities, Wp is known to satisfy all
the metric conditions (i-iv). It is also known that Wp

correctly captures the concept of weak convergence, in
the sense that Wp(ft, feq)→ 0 (as t→∞) if and only if
ft ⇒ feq and the pth moments of ft converge to those of
feq.

Due to its desirable geometric properties, the Wasser-
stein distance has been applied in ML to tasks such as
shape matching, image retrieval, graphics, and to the sta-
tistical analysis of detector events in high-energy collid-
ers [38–40]. However, the estimation of Wp from sample
data requires solving a linear optimization problem with
a computational complexity of O(n3 log n), where n is
the number of samples [41, 42]. Furthermore, the sample
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estimate converges to the population value as O(n−1/d)
for d > 2. This makes Wp challenging to use for practi-
cal beam dynamics simulations, which typically require
n ≥ 105 and d ≥ 4. Since there are few cases in which
(8) can be determined in closed form, algorithms for com-
puting Wp are also difficult to benchmark.

C. Maximum Mean Discrepancy

A kernel k is a symmetric, real-valued function defined
on pairs of phase space points that is positive definite, in
the sense that:

N∑
i=1

N∑
j=1

cicjk(Xi, Xj) ≥ 0, (10)

for each N = 1, 2, . . ., each finite set of points X1, . . . , XN

and real numbers c1, . . . , cN . Typical examples are pro-
vided in Appendix A.

To each kernel k is associated a Hilbert space (RKHS)
consisting of real-valued functions on the phase space.
The Maximum Mean Discrepancy (MMD) between two
probability densities f and g is then defined by [7]:

γk(f, g) = max
φ

∣∣∣∣∫ f(X)φ(X)dX −
∫
g(X)φ(X)dX

∣∣∣∣
(11)

where the maximum is taken over all functions φ in the
RKHS with ||φ||k ≤ 1, || · ||k denotes the Hilbert space
norm, and | · | denotes the absolute value.

When k is bounded, the quantity in (11) is defined
for all probability densities f and g, and γk satisfies the
metric conditions (i-iii). Additional restrictions on k are
used to ensure that γk satisfies condition (iv), and that
γk captures weak convergence, in the sense previously
described. The class of kernels satisfying these restric-
tions has been extensively studied [43–47], and it includes
most of the kernels widely used in ML, including those
described in Appendix A.

Due to its well-developed mathematical foundation, its
connection to other ML kernel methods such as support
vector machines [8], its applicability to domains more
general than Euclidean space, and its relative ease of es-
timation, the distance γk has become a powerful tool
in statistical two-sample (homogeneity) testing for ML
applications. Estimation of (11) from sample data can
be achieved using O(n2) operations, and the sample es-
timate converges to the population value as O(n−1/2),
independently of the dimension d. Furthermore, approx-
imations also exist that can be computed with complexity
O(n), making γk a practical quantity for beam dynamics
applications. (Sections IV B-IV C below contain further
details.)

IV. PROPERTIES OF MAXIMUM MEAN
DISCREPANCY

Given a kernel k, the maximum appearing in (11) can
be evaluated exactly by using the properties of its cor-
responding RKHS. As a result, the MMD between two
probability densities f and g can be expressed using the
explicit integral formula [43]:

γk(f, g) =

(∫∫
k(X,X ′)∆(X)∆(X ′)dXdX ′

)1/2

,

(12)
where ∆ = f − g. For certain choices of k, the quantity
(12) coincides with other well-known indicators of sta-
tistical distance. For example, in the special case that
k(X,X ′) = |X| + |X ′| − |X − X ′|, (12) appears in the
statistics literature as the energy distance [48, 49].

A. Basic properties

Given any kernel k, one may construct a corresponding
kernel kN by:

kN (X,X ′) =
k(X,X ′)√

k(X,X)k(X ′, X ′)
. (13)

The condition that k be positive definite (10) then implies
that kN is positive definite with |kN | ≤ 1. For simplicity,
we will assume that all kernels are so normalized. It then
follows from (12) that the distance γk is dimensionless
with:

0 ≤ γk ≤ 2. (14)

It is natural to choose a kernel that reflects the un-
derlying properties of the domain, so we often consider
kernels that are translation-invariant, in the sense that
k(X,X ′) = k(X + δX,X ′+ δX) for any phase space dis-
placement δX. A continuous, translation-invariant ker-
nel can be written in terms of its Fourier components
as:

k(X,X ′) =

∫
ei(X−X

′)·ωΛ(ω)dω. (15)

When k is normalized, Λ is a probability density [25] on
the space of frequencies ω = (ω1, . . . , ωd). Using (15) in
(12), one finds that:

γk(f, g) =

(∫
|φf (ω)− φg(ω)|2 Λ(ω)dω

)1/2

, (16)

where φf and φg denote the Fourier transforms of the
densities f and g, normalized so that:

φf (ω) =

∫
eiX·ωf(X)dX. (17)

When the probability density Λ is also an integrable func-
tion that is strictly positive everywhere, it is possible to
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prove that (16) satisfies the metric conditions (i-iv) and
correctly reflects the weak convergence of probability dis-
tributions, as previously described.

One additional property of γk is also useful. If {el : l =
1, 2, . . .} denotes an orthonormal basis for the RKHS as-
sociated with the kernel k, then we may define a complete
sequence of beam “moments” ml by:

ml(f) =

∫
el(X)f(X)dX (l = 1, 2, . . .). (18)

It follows from (12) that the MMD between two distribu-
tions f and g may be written in terms of these moments
as:

γk(f, g) =

√√√√ ∞∑
l=1

|ml(f)−ml(g)|2. (19)

In particular, for every l = 1, 2, . . . we have:

|ml(f)−ml(g)| ≤ γk(f, g). (20)

Thus when γk is small, all of the moments ml of the
distributions f and g must nearly coincide. (An example
is provided in Appendix A.)

B. Sample estimate

A direct estimate of (12) from particle (sample) data
is given by [7]:

γ2
k(f, g) =

1

m2

m∑
i,j=1

k(Xi, Xj)−
2

mn

m,n∑
i,j=1

k(Xi, Yj)

+
1

n2

n∑
i,j=1

k(Yi, Yj), (21)

where the m particle phase space coordinates {Xj}mj=1

are independently sampled from the distribution f , and
the n particle phase space coordinates {Yj}nj=1 are inde-
pendently sampled from the distribution g. Note that we
allow m 6= n.

An alternative grouping of the sum (21) that yields
superior numerical precision in practice is given by:

γ2
k(f, g) =

m+n∑
i,j=1

cicjk(X̂i, X̂j), (22)

where

cj =

{
1
m , 1 ≤ j ≤ m
− 1
n , m+ 1 ≤ j ≤ m+ n

(23)

and {X̂j}m+n
j=1 contains the phase space coordinates inde-

pendently sampled from the distribution f , followed by

the phase space coordinates independently sampled from
g, so that:

X̂j =

{
Xj , 1 ≤ j ≤ m
Yj−m, m+ 1 ≤ j ≤ m+ n

. (24)

The use of (22) avoids a loss of precision that can occur
in the evaluation of (21) due to the cancellation of large
terms. In the form (22), it is clear from (10) that the
estimate satisfies γ2

k ≥ 0, and that the computational
complexity is O((m+ n)2).

In the special case that the kernel k is translation-
invariant, the complexity can be reduced by using the
spectral representation (16) to approximate γk as the sum
[50, 51]:

γ2
k(f, g) =

1

L

L∑
l=1

∣∣∣∣∣∣
m+n∑
j=1

cje
iωl·X̂j

∣∣∣∣∣∣
2

(25)

where the {ωl}Ll=1 denote L frequency vectors that are in-
dependently sampled from the spectral probablity den-
sity Λ, and the quantities {cj}m+n

j=1 and {X̂j}m+n
j=1 are

given by (23-24). The complexity of (25) is O(L(m+n)),
where in practice it is sufficient to use L� m+ n. This
results in significant speed-up when translation-invariant
kernels are used to compute γk.

C. Statistical error

It is shown in [41, 42] that the sample estimate (21)
converges to the population value (12) as O(m−1/2 +
n−1/2) when m,n → ∞, independently of the dimen-
sion of the underlying space. A similar result [50, 51]
may be obtained for the estimate (25).

In practice, the sample estimate in (21-22) or (25) is
used to test the hypothesis that two distributions are
distinct, f 6= g. To set a confidence threshold for this
test, one must know the statistical distribution of (21)
under the null hypothesis that f = g. This problem has
been treated in detail [7, 48]. For our purposes, it is
enough to know that the root-mean square (rms) value
of γk under the hypothesis that f = g is given by taking
the expected value of (21), which is given by:

γnoise
k = E[γ2

k]1/2 =

√
m+ n

mn

(
1− ||f ||2k

)1/2
, (26)

where the notation || · ||k denotes

||f ||2k =

∫∫
k(X,X ′)f(X)f(X ′)dXdX ′. (27)

An identical result is obtained by using (25). Thus (26)
represents a statistical noise level for γk that is associated
with the use of a finite number of particles, and when
m = n, we see that γnoise

k ∝ 1/
√
n. The probability P
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that γk exceeds a threshold value τ > 0 is then bounded
above by Markov’s inequality, which states that for any
τ > 0:

P (γk > τ) ≤
(
γnoise
k

τ

)2

. (28)

It follows that (given the null hypothesis) large deviations
above the noise floor γnoise

k are rare. A more detailed
investigation [7] reveals that the bound in (28) is loose—
that is, the probability on the left-hand side in (28) is
much smaller and decays more quickly with τ than (28)
alone would suggest.

A discussion of statistical error in the more general case
(when one may have f 6= g) is provided in Appendix C.

D. Numerical implementation

The expressions in (22) and (25) are straightforward
to implement in a parallel particle-based beam dynam-
ics simulation code. The resulting numerical diagnostic,
which we denote by MMD, may be used to compare an
evolving particle distribution ft with itself after succes-
sive t-intervals ∆t (e.g., lattice periods), or to compare
the evolving particle distribution against a fixed reference
distribution (usually an initial or predicted final distri-
bution). The frequency samples {ωl}Ll=1 in (25) may be
generated once and stored at initialization of the simu-
lation, or the samples may be drawn independently at
each evaluation of the MMD. The latter is the approach
favored in the literature.

An algorithm can also be implemented to estimate γk
using the representation given in (19). When the basis
functions {el}∞l=1 are known, it is straightforward to esti-
mate the moments (18) from particle samples. However,
the number of basis functions required to obtain conver-
gence of the sum (19) grows rapidly with the phase space
dimension d. For a Gaussian kernel with d ≥ 2, we found
that this algorithm was outperformed by the spectral al-
gorithm (25) for all examples tested.

A remark about the choice of kernel k is in order. For
simplicity, we use a Gaussian kernel (69) along each un-
bounded phase space coordinate. The kernel width σ is
chosen to coincide with a typical rms beam size. In some
cases, it is natural to consider periodic domains (for ex-
ample, if one models a longitudinal beam slice with pe-
riodic boundary conditions). Along a phase space coor-
dinate that is naturally periodic, we use a Poisson ker-
nel (73) with the appropriate periodicity. For dynamical
problems, it is important that the kernel remain fixed
throughout the simulation.

V. HILBERT SCHMIDT CORRELATION

Recall that two random variables X and Y described
by a joint probability density PXY are said to be inde-
pendent when PXY = PXPY , where PX and PY are the

marginal densities given by:

PX(X) =

∫
PXY (X,Y )dY, (29a)

PY (Y ) =

∫
PXY (X,Y )dX. (29b)

Given a metric ρ on the set of such joint probabil-
ity densities, a natural measure of deviation from in-
dependence between X and Y is given by the distance
ρ(PXY , PXPY ). This motivates the following definitions.

A. Definition and properties

For simplicity, we assume that X and Y take their val-
ues in the same space Rd, on which a kernel k is defined.
We define a new kernel κ on Rd × Rd by:

κ((X,Y ), (X ′, Y ′)) = k(X,X ′)k(Y, Y ′). (30)

It follows that κ is symmetric and positive definite (10).
The Hilbert Schmidt correlation Rk between X and Y

is then defined by:

R2
k(X,Y ) =

γ2
κ(PXY , PXPY )

γκ(PXX , PXPX)γκ(PY Y , PY PY )
. (31)

The quantity in the numerator is known as the Hilbert
Schmidt Independence Criterion (HSIC) [10, 52, 53]. The
normalizing factor in the denominator appears in [48],
and is designed to ensure that Rk ≤ 1. The joint densi-
ties PXX and PY Y represent the limiting case of perfect
correlation when X = Y , namely:

PXX(X,Y ) = PX(X)δ(Y −X), (32)

PY Y (X,Y ) = PY (Y )δ(X − Y ).

Here δ denotes the Dirac delta.
It may be shown that the quantity in (31) satisfies:

0 ≤ Rk ≤ 1, (33)

Rk = 0 if and only if X and Y are independent,

Rk = 1 if X and Y are identical.

It follows thatRk provides a natural measure of (possibly
nonlinear) correlation between X and Y . The special
case when k(X,X ′) = |X|+ |X ′| − |X −X ′| is known in
the statistics literature as the distance correlation (dCor)
[48, 49, 54, 55].

When the kernel k is translation-invariant, we may use
the representation (16) to write the numerator of (31) as:

γ2
κ(PXY , PXPY ) =∫
|φXY (ω, ω′)− φX(ω)φY (ω′)|2 Λ(ω)Λ(ω′)dωdω′, (34)

where Λ is the spectral density of k defined in (15), and

φXY (ω, ω′) =

∫
ei(ω·X+ω′·Y )PXY (X,Y )dXdY, (35a)

φX(ω) = φXY (ω, 0), φY (ω′) = φXY (0, ω′). (35b)
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Corresponding expressions for the factors in the denom-
inator of (31) are obtained from (34) by taking Y 7→ X
or X 7→ Y as appropriate, and using (32) to write:

φXX(ω, ω′) =

∫
ei(ω·X+ω′·Y )PXX(X,Y )dXdY

= φX(ω + ω′), (36a)

φY Y (ω, ω′) =

∫
ei(ω·X+ω′·Y )PY Y (X,Y )dXdY

= φY (ω + ω′). (36b)

B. Sample estimate

An estimate of the numerator of (31) from particle
(sample) data is given by:

γ2
κ(PXY , PXPY ) =

1

m2

m∑
i,j=1

k(Xi, Xj)k(Yi, Yj)

+
1

m4

m∑
i,j,q,r=1

k(Xi, Xj)k(Yq, Yr)

− 2

m3

m∑
i,j,q=1

k(Xi, Xj)k(Yi, Yq) (37)

where the m pairs {(Xj , Yj)}mj=1 are independently sam-
pled from the density PXY . The corresponding expres-
sions appearing in the denominator of (31) are obtained
from (37) by taking Yj 7→ Xj and Xj 7→ Yj , respectively.
It can be shown that (37) can be computed with O(m2)
complexity by introducing O(m) storage.

In the special case that the kernel k is translation in-
variant, this complexity can be further reduced by work-
ing in frequency space using (34). An efficient estimate
is given by:

γ2
κ(PXY , PXPY ) =

1

L

L∑
k=1

∣∣∣∣∣∣ 1

m

m∑
j=1

eiω2k−1·Xje−iω2k·Yj

(38)

−

 1

m

m∑
j=1

eiω2k−1·Xj

 1

m

m∑
j=1

e−iω2k·Yj

∣∣∣∣∣∣
2

,

where {ωk}2Lk=1 denote 2L frequency vectors that are in-
dependently sampled from the spectral probability den-
sity Λ associated with k. Note that the complexity of
(38) is given by O(mL). (This is a variant of the random
Fourier features estimate appearing in [51, 56].)

C. Statistical error

In practice, the sample estimate in (37) or (38) is used
to test the hypothesis that two random variables X and

Y are independent. To set a confidence threshold for
this test, one needs to know the statistical distribution
of (37) under the null hypothesis that PXY = PXPY .
This problem has been treated in detail [10, 48, 52, 53].
For our purposes, it is enough to know the rms value of
Rk under the hypothesis that X and Y are independent.
This is given by taking the expected value of (37), which
yields:

E[γ2
k(PXY , PXPY )]

=
(m− 1)

m2

(
1− ||PX ||2k

) (
1− ||PY ||2k

)
, (39)

where || · ||k has the same meaning as in (27). Thus we
have, to leading order in 1/m:

Rnoise
k =

1√
m

(
1− ||PX ||2k

)1/2 (
1− ||PY ||2k

)1/2
γκ(PXX , PXPX)γκ(PY Y , PY PY )

. (40)

Note that (40) is fully determined by the marginal den-
sities PX and PY through (32).

Given the null hypothesis, an inequality corresponding
to (28) holds after γk is replaced by Rk, indicating that
large deviations above the noise floor value Rnoise

k are
rare.

D. Numerical Implementation

In practice, the random variables X and Y described
above may represent two phase space coordinates within
a single beam (e.g., X = z and Y = pz) or two d-tuples
of phase space coordinates (e.g., X = (x, px) and Y =
(y, py)). In this case, computation ofRk(X,Y ) using (37)
or (38) returns a measure of correlation between phase
space coordinates within the beam.

Alternatively, letX(0) denote the vector of phase space
coordinates for a particle within the beam at initial time
(or lattice location) t = 0, and let X(t) denote the vector
of phase space coordinates for the same particle at a later
time t. Then Rk(X(0), X(t)) measures the correlation of
a particle’s coordinates at time t with the particle’s initial
coordinates, and this quantity will be denoted Rk(t) for
simplicity. The dynamical evolution of this quantity is
intimately related to mixing. (See Appendix B.)

Given a beam consisting of m particles, numerical eval-
uation of Rk(t) requires that each particle be assigned a
unique index j, so that one may construct the set of par-
ticle pairs (X(0)j , X(t)j), j = 1, . . . ,m at each desired
evaluation time t. In particular, the arrays containing
the initial and final phase space coordinates of particle
j must be stored on the same processor, which requires
appropriate bookkeeping and possible communication.

VI. APPLICATIONS TO IDEALIZED AND
EXACTLY-SOLVABLE MODELS

In this section, we illustrate several applications of the
above tools to dynamical problems involving beams: 1)
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to compare two beams for benchmarking and quantify-
ing beam mismatch, 2) to detect nonlinear phase space
correlations and coupling between phase planes, 3) to
verify numerically that a beam that is generated from a
well-matched distribution remains stationary, 4) to study
the relaxation of a non-equilibrium beam to a stationary
state, and 5) to measure the rate of chaotic mixing and
decay of correlations within a beam during its evolution.

To aid in benchmarking the diagnostics MMD (γk) and
HSCor (Rk), idealized distributions and exactly-solvable
models involving maps are used. The next section will
discuss realistic examples involving high-intensity beams.

A. Distribution comparison and mismatch

Let f and f ′ denote two centered Gaussian distribu-
tions with covariance matrices Σ and Σ′, respectively.
To determine the distance between these distributions,
we consider an arbitrary Gaussian kernel k of the form:

k(X,X ′) = exp

(
−1

2
(X −X ′)TS(X −X ′)

)
, (41)

where S is any symmetric, positive definite matrix. Such
a matrix may always be decomposed as S = ATA for
some matrix A. The MMD between f and f ′ may be
obtained using (12) as:

γ2
k(f, f ′) = det (I + 2ΣN )

−1/2
+ det(I + 2Σ′N )−1/2

− 2 det(I + ΣN + Σ′N )−1/2, (42)

where I is the identity matrix, and the normalized co-
variance matrices are:

ΣN = AΣAT , Σ′N = AΣ′AT . (43)

This yields a large class of examples for benchmarking
the computation of MMD in any dimension.

As a special case of (42), consider two Gaussian beams
f and f ′ described on a 2D phase space (x, px) with iden-
tical emittance ε, with covariance matrices:

Σ = ε

(
β −α
−α γ

)
, Σ′ = ε

(
β′ −α′
−α′ γ′

)
. (44)

Taking S = Σ−1 in (41) and computing the MMD be-
tween f and f ′ using (42) gives:

γ2
k(f, f ′) =

1

3
− 1√

5 + 4ζ
. (45)

Here the result is expressed in terms of the linear beam
mismatch parameter ζ, given by:

ζ =
1

2
(βγ′ − 2αα′ + γβ′) , ζ ≥ 1. (46)

The same result is obtained by taking S = (Σ′)−1 in
(41). Note that (45) vanishes when ζ = 1, and increases

monotonically with increasing mismatch ζ. Thus, when
the MMD can be expressed in terms of the linear mis-
match, the result behaves as expected.

In addition to detecting differences based on the sec-
ond beam moments, the MMD detects differences in the
details of two distributions. For a 4D example relevant
to charged-particle beams, consider a K-V distribution
fKV and a (4D) Gaussian distribution fG with the same
second moments, described by a 4× 4 covariance matrix
Σ in the variables X = (x, px, y, py). By choosing the
kernel (41) with S = Σ−1, we may take without loss of
generality Σ = I4×4, the 4× 4 identity matrix. Then we
have:

fKV (x, px, y, py) =
1

2π2
δ(4− ||X||2), (47a)

fG(x, px, y, py) =
1

(2π)2
e−||X||

2/2, (47b)

where ||X|| = (x2 +p2
x+y2 +p2

y)1/2 and δ denotes a Dirac
delta. Taking the Fourier transforms of (47) according to
(17) and evaluating the integral in (16) gives the exact
result:

γk(fKV , fG) =

√
1

9
− 1

2e
+
I2(4) + I3(4)

2e4
, (48)

where In denotes the modified Bessel function of or-
der n. This result corresponds to the numerical value
γk(fKV , fG) ≈ 0.12863. Figure 1 illustrates the numeri-
cal error associated with the estimation of this quantity
using (25), for varying number of particles n = m and
number of frequency samples L. See Appendix C for
further discussion of the numerical error.

B. Detecting phase space correlations

For a Gaussian distribution of any dimension, one may
detect linear correlations among the various degrees of
freedom by using (42) in (31). As an example, consider
a Gaussian distribution on a 2D phase space (q, p) with
the covariance matrix:

Σ =

(
1 r
r 1

)
, f(q, p) =

1

2πa
e−(q2+p2−2rqp)/2a2 , (49)

where a =
√

1− r2 and −1 ≤ r ≤ 1. Using a Gaus-
sian kernel of unit width, the correlation Rk between the
variables q and p is given by:

R2
k =

g(r)

g(1)
, g(r) =

1

3
+

1√
9− 4r2

− 2√
9− r2

. (50)

This result is expressed in terms of the standard linear
correlation coefficient r. Note that Rk increases mono-
tonically from 0 to 1 as |r| increases from 0 to 1. Thus,
when the HSCor can be expressed in terms of the linear
correlation coefficient, the results behaves as expected.
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Benchmark Convergence Tests

Comparison of two Gaussian distributions
(identical first and second moments)

Comparison of a Gaussian distribution and KV
distribution (identical first and second moments)

Curves for all values of L coincide and agree with
the analytical prediction (inset).

Curves for increasing values of L approach the curve 
obtained using the n2 calculation (shown in black).
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Benchmark Convergence Tests

Comparison of two Gaussian distributions
(identical first and second moments)

Comparison of a Gaussian distribution and KV
distribution (identical first and second moments)

Curves for all values of L coincide and agree with
the analytical prediction.

Curves for increasing values of L approach the curve 
obtained using the n2 calculation (shown in black).
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FIG. 1. (Upper) Difference between the result γk(fKV , fG)
given in (48) and its numerical estimate obtained using (25)
for varying number of particles n = m and number of fre-
quency samples L. Statistical averaging was performed using
1000 distinct realizations of the sampled distributions fKV ,
fG, and Λ. Curves for increasing values of L approach the
curve obtained using the estimate based on (22), shown in
black. (Lower) The same quantities, shown for the case of two
(4D) Gaussian distributions with the same second moments.
In this case, the rms error ∆γrms is independent of the num-
ber of frequency samples L and is equal to γnoise

k (26).

The quantityRk is useful for detecting nonlinear corre-
lations, even when the exact structure of the correlation
is unknown. For example, a quadratic correlation be-
tween longitudinal position z and momentum pz can ap-
pear after transporting a charged-particle beam through
a radiofrequency (RF) accelerating cavity at the appro-
priate phase. Consider the case of a Gaussian beam with
such a quadratic correlation in the longitudinal phase
space (z, pz):

f(z, pz) =
1

2πσzσp
e−z

2/2σ2
ze−(pz+az2)2/2σ2

p . (51)

Here σz denotes the longitudinal beam size, σp denotes
the (uncorrelated) momentum spread, and a 6= 0. The
linear correlation between z and pz in (51) vanishes, since
one may verify that 〈zpz〉 = 0.

Using the dimensionless variables z̄ = z/σz and p̄z =
pz/(aσ

2
z), and choosing a Gaussian kernel of width 1,

FIG. 2. Hilbert-Schmidt correlation Rk between variables
z and pz in the longitudinal phase space of a bunch with a
quadratic correlation (51). (Inset) Sampled particles (104) for
the case σp/aσ

2
z = 1, yielding the computed valueRk ≈ 0.375.

one may evaluate the correlation Rk between z̄ and p̄z.
This may be achieved by using the definition (31) with
random variables X = z̄, Y = p̄z, and evaluating the
integrals in (34-35) numerically. The result is shown in
Fig. 2 as a function of the dimensionless parameter σ̄p =
σp/(aσ

2
z). The result is independent of the sign of a. We

see that Rk becomes small as the quadratic coefficient a
becomes small or as the uncorrrelated momentum spread
σp becomes large, as one might expect.

C. Testing for stationarity

Often one must characterize the degree to which a
given particle distribution remains stationary over many
periods of dynamical evolution. This can be quantified
by computing the distance γk(ft, f0) between the initial
distribution f0 and the distribution ft after t periods.

For example, consider the 2D nonlinear symplectic
map given by [58]:(
qf

pf

)
=

(
cosφ sinφ
− sinφ cosφ

)(
q
p

)
, φ = ψ +

α

2

(
q2 + p2

)
,

(52)
where ψ > 0 and α > 0 are constants. This may be
viewed as a simple model of a betatron phase advance
in a single plane that increases linearly with the action
J = (q2 + p2)/2.

A Gaussian distribution of the form:

f(q, p) =
1

2πε0
e−(q2+p2)/2ε0 (53)

is an explicit function of the action J , and is therefore
invariant under the map (52). Sampling n = 104 particles
from (53) and tracking them under iterates of the map
(52), we compare the distribution at each iteration with
the initial distribution. The result is shown in Fig. 3.

The MMD distance γk(ft, f0) to the initial distribution
is nonzero after the first iteration, but remains near 10−2
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MMD distance from the initial beam distribution for a stationary beam in
a toy map

t

�
k
(f

t
,f
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FIG. 3. Dynamics of a 2D beam with n = 104 particles sam-
pled from a matched Gaussian distribution (53) evolving un-
der iteration of the map (52). The quantity γk(ft, f0) is shown
as a function of the iteration number t for 4 distinct random
seeds, showing that the distribution remains stationary.

over the time interval observed. Due to the finite number
of particles, the value of γk(ft, f0) experiences statistical
fluctuations around the predicted rms value given by (26)
(black curve).

D. Relaxation to a stationary state

If the distribution (53) is given an initial centroid offset
q 7→ q + q0 with q0 > 0, the beam will filament [57] and
converge weakly to a stationary equilibrium of the form
[58]:

feq(q, p) =
1

2πε0
e−(q2+p2+q20)/2ε0I0

(
q0

ε0

√
q2 + p2

)
.

(54)
See Fig. 1 of [58] for a visual illustration. Using a Gaus-
sian kernel of width σ in expression (16), one may solve
exactly for the time evolution of the MMD distance to
equilibrium:

γ2
k(ft, feq) = 2s2

∞∑
n=1

νne
−νn(1+2d2s2τ2

n)In(νn), (55)

where In denotes the modified Bessel function of order n
and

νn =
d2

1 + d2s2(1 + τ2
n)
, (56)

is given in terms of the dimensionless parameters:

τn = ntαε0, d2 =
q2
0

2ε0
, s =

σ

q0
. (57)

In particular, we see that for large t, (55) converges to
zero as γk(ft, feq) ∼ O(1/t2).

MMD distance from the beam distribution to the equilibrium distribution
For the nominal filamentation test problem

t

�
k
(f

t
,f

e
q
)

t

10
3

er
ro

r

FIG. 4. Evolution of a distribution with n = 105 particles
sampled from (53) with initial offset q 7→ q + q0 under iter-
ation of the map (52). The distance of the distribution to
the predicted equilibrium (54) after t iterates is shown. (Red
curve) Analytical prediction (55). (Black, inset) Absolute er-
ror in the numerical result obtained using (22). (Blue, inset)
Absolute error in the numerical result obtained using (25)
with L = 103. (Red, dashed) Prediction (26) of the numeri-
cal noise level evaluated using the distribution feq.

Fig. 4 illustrates the result obtained from tracking 105

particles sampled from (53) for ε0 = 0.01 with a cen-
troid offset of q0 = 0.5 under the map (52) with ψ = 0.3,
α = 0.1. We use a Gaussian kernel with width parame-
ter σ = 1 to compare the distribution at each iteration
with the stationary distribution (54). The inset shows
the difference between the computed value of γk(ft, feq)
and the analytical prediction for provided in (55). By
t = 500, the distribution ft has converged to the distri-
bution feq to within the resolution set by the particle
noise (26). This shows that MMD provides a diagnostic
capable of measuring the dynamical relaxation of a beam
to a stationary state.

E. Mixing and decay of correlations

Although the term “mixing” is sometimes used to refer
to any process involving filamentation and relaxation of
the beam in phase space, we distinguish between regu-
lar mixing (which is characteristic of nonlinear integrable
systems) and mixing in the ergodic sense (which is char-
acteristic of systems with widespread chaos). Here, we
refer to the latter meaning of the term, as it is formalized
in ergodic theory [59]. (See Appendix B.)

A simple illustration of chaotic mixing behavior is
given by the Arnold cat map [60], which is the 2D area-
preserving map given by:(

qf

pf

)
=

(
2 1
1 1

)(
q
p

)
mod 2π, (58)

where we assume that q and p each have period 2π [61].
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The uniform density:

f(q, p) =
1

(2π)2
, q, p ∈ [0, 2π) (59)

is invariant under (58) since the map is area-preserving.
Figures illustrating the filamentation and folding induced
by the cat map may be found in many places [62].

The Hilbert Schmidt correlation provides a quantita-
tive measure of mixing and the resulting decay of correla-
tions over time. To illustrate this, we sample n = 105 ini-
tial conditions from the distribution (59) and track these
under the map (58). After each iteration, we compute the
valueRk(X(t), X(0)), where X(0) is the random variable
denoting a particle’s initial phase space coordinates, and
X(t) denotes the particle’s phase space coordinates after
t iterations of the map. For simplicity, we denote this
quantity by Rk(t). In a periodic domain, it is appropri-
ate to use a kernel that reflects the underlying domain
periodicity. Using a Poisson kernel with parameter σ in
each dimension (Appendix A), we may compute the value
of Rk(t) explicitly. The value after t iterations is given
exactly by the sum:

Rk(t) =

(
1− σ2

2σ

) ∞∑
n1,n2=−∞
n1 6=0,n2 6=0

σC(n1,n2,t)


1/2

, (60)

where the exponent is (t = 1, 2, 3, . . .):

C(n1,n2, t) = |n1|+ |n2|
+ |F2t+1n1 + F2tn2|+ |F2tn1 + F2t−1n2| (61)

given in terms of the usual Fibonacci sequence:

F1 = F2 = 1, Ft = Ft−1 + Ft−2. (62)

Fig. 5 shows the decay of the quantity Rk(t) as a func-
tion of the iteration number t for the case σ = 1/2. Be-
cause the prediction (60) is only defined for nonnegative
integer values of t, the red curve shown connects these
values using smooth interpolation. Note that mixing for
the map (58) is very rapid. After only 4-5 iterations,
the correlations between the initial and final phase space
coordinates are at or below the level expected due to nu-
merical particle noise, as given by (40) and indicated by
the black line.

To illustrate the dynamical decay of correlations in
more detail, Fig. 6 shows the initial phase space coor-
dinates (q(0), p(0)) versus the coordinate q(t) at several
times t > 0, for each of the sampled particles used to
generate Fig. 5. Nonlinear correlations are visible, and
these correlations occur at a scale length that decreases
with increasing t, until by t = 10 no visible correlations
remain, consistent with the behavior of Rk(t) in Fig. 5.
(The plots are shown in 3D because the correlations be-
tween initial and final coordinates are not visible using
2D projections.)

HSIC correlation decay for a uniform distribution under the cat map
Due to chaotic mixing

Using 100K particles – quad solvers

q(0)
0 2##

#
2#

Rk

(number of iterations)t

R
k
(t

) p
(0

)

FIG. 5. Dynamics of a beam with n = 105 particles sampled
from the density (59) evolving under iteration of the map
(58). The quantity Rk(t) is shown as a function of the iter-
ation number t, illustrating the decay of correlations due to
mixing. The red curve shows the prediction (60), the black
points are the results of simulation, and the black curve de-
notes the expected rms value due to noise (40). (Inset) Plot
of initial particle coordinates (q(0), p(0)) sampled from the
density (59).
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FIG. 6. Initial phase space coordinates (q(0), p(0)) versus the
final coordinate q(t) at t = 1, 2, 3, 10 for the particles used
to generate Fig. 5, showing the visible correlations that are
quantified by Rk(t) and their evolution over time.

VII. APPLICATION TO HIGH-INTENSITY
BEAMS

A. Beam in a constant focusing channel

As our first example including self-field effects (space
charge), we consider an unbunched intense beam in a con-
stant focusing channel that is initialized in a stationary
thermal equilibrium, so the 4D beam distribution takes
the form:

f0(x, px, y, py) ∝ e−H(x,px,y,py)/kT , (63)
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MMD distance from the initial beam distribution for a stationary beam in
a constant focusing channel

t (propagation distance in m)

�
k
(f

t
,f

0
)

FIG. 7. Test of stationarity for an unbunched (4D) beam
with n = 106 particles sampled from a thermal equilibrium
distribution (63) propagating in a linear constant focusing
channel. The quantity γk(ft, f0) is shown as a function of
propagation distance t for 4 distinct random seeds.

where H denotes the self-consistent Hamiltonian:

H =
1

2
(p2
x + p2

y) +
1

2
Ω2(x2 + y2) +

qφ(x, y)

β2γ3mc2
, (64)

and φ is a solution of the 2D Poisson equation:(
∂2

∂x2
+

∂2

∂y2

)
φ = − λ

ε0

∫
f0(x, px, y, py)dpxdpy. (65)

Here λ denotes the charge per unit length, and ε0 de-
notes the vacuum permittivity. This model describes an
infinitely long monoenergetic beam of uniform line den-
sity in z, moving with velocity β = vz/c, that is confined

using transverse focusing. As usual, γ = 1/
√

1− β2.
For simulation, we consider a proton beam with a ki-

netic energy of 200 MeV and a beam current of 20 A in
an external focusing of strength Ω = 0.628 m−1 (corre-
sponding to a 2.7 T solenoid field). The temperature kT
is chosen to yield the initial emittance εx,rms = εy,rms =
1.24 µm. The tune depression due to space charge is
then given by ν/ν0 ≈ 0.55. See [23] for additional details
regarding the physical model.

Fig. 7 illustrates the MMD distance between the ini-
tial distribution and the distribution at time t, for four
distinct random seeds. To compute (25), a Gaussian ker-
nel was used. The kernel width parameter σ associated
with each phase space dimension was matched to the
corresponding rms width of the distribution (63). For
each random seed, self-consistent tracking with trans-
verse (2D) space charge using n = 106 particles was
performed using the symplectic gridless spectral solver
described in [63]. Notice that the distribution remains
stationary to within the level expected due to particle
noise (black line). Compare this dynamical behavior to
that shown in Fig. 3.

Relaxation of an rms-matched, mismatched beam in a constant
Focusing channel

Using 1M particles – freq solvers
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FIG. 8. Collisionless relaxation of an unbunched (4D) beam
with n = 106 particles sampled from the distribution (66) in
a linear constant focusing channel (64), where t denotes the
number of linearized envelope periods. The MMD between
the distribution on successive periods γk(ft, ft−1) decays to
the level of noise as the beam relaxes to a stationary state.
(Inset) The final particle distribution (one quadrant).

As a second example, consider a proton beam with the
same energy and emittance as above. However, instead
of the stationary distribution (63), we use the initial dis-
tribution [6]:

f0(x, px, y, py) =
1

π2r2
mp

2
m

Θ(rm − r)Θ(pm − p) (66)

where r =
√
x2 + y2, p =

√
p2
x + p2

y, and Θ denotes

the unit step function. The distribution (66) is not sta-
tionary, but to minimize fluctuations of the rms beam
size, we match the beam in an rms sense by setting
p2
m = Ω2r2

m − Kpv, where Kpv denotes the generalized
beam perveance [23]. In the absence of precise knowl-
edge of the final equilibrium state, we compare the parti-
cle distribution at successive time intervals separated by
∆t = 6.20 m, corresponding to the period of linearized
envelope oscillations about the equilibrium beam size rm.
The result is shown in Fig. 8. On the time scale shown,
the beam appears to undergo relaxation toward a final
distribution containing a small but visible low-density
halo (inset). This fast relaxation appears to be a prop-
erty of the collisionless Vlasov-Poisson system, and it is
to be distinguished from slow relaxation due to collisional
effects [4], which are not included in the numerical model.

An illustration of the time evolution of the particle dis-
tribution for this example is provided in Fig. 9. In order
to visualize the dynamics of the phase space points, a
subset of initial conditions is highlighted in black, and
this particle subpopulation is shown at each time t. The
phase space region highlighted in black filaments and
folds, and at t = 2000 this particle subpopulation ap-
pears distributed throughout the beam. Nevertheless,
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FIG. 9. Projections into the (x, px) plane of an initially rms-
matched (but non-stationary) distribution (66) evolving in a
linear constant focusing channel, shown at four distinct times.
The particles shown are those used to produce Fig. 8. (Red)
The complete simulated particle distribution. (Black) A sub-
set of initial conditions, illustrating dynamical filamentation
of the phase space.

the system described in this section cannot be fully mix-
ing due to the existence of invariants of motion (for ex-
ample, the angular momentum). Indeed, the computed
quantityRk(t) converges rapidly to a nonzero value. This
behavior of Rk(t) will be examined using a more complex
example in the following section.

B. Beam in a periodic FODO channel

As a typical application to an intense beam in a peri-
odic focusing structure, we consider an alternating gra-
dient quadrupole (FODO) channel. Each period consists
of a single FODO cell as shown in Fig. 10. We con-
sider a proton beam with a kinetic energy of 200 MeV
and a beam current of 10 A with an initial emittance
of εx,rms = εy,rms = 1 µm (unnormalized). The initial
distribution is Gaussian of the form:

f0(x, px, y, py) =
1

(2π)2εx,rmsεy,rms
e−

1
2X

T Σ−1X , (67)

where X = (x, px, y, py) and Σ denotes the covariance
matrix. Although the second beam moments are chosen
so that the beam is matched in an rms-sense, the dis-
tribution is not matched in detail. Fig. 10 shows the
evolution of the matched beam envelopes over a single
period. The zero-current phase advance is 60.1◦ per cell,
while the 10 A phase advance is 25.9◦ per cell, so that
space charge plays a significant role.

Fig. 11 illustrates the MMD distance between the
initial distribution and the distribution after t periods
(blue), together with the MMD distance between succes-
sive periods (red). To compute (25), a Gaussian kernel

Relaxation of an rms-matched, mismatched beam in a FODO lattice

�x
�y

FIG. 10. Matched (K-V) beam envelopes for a 10 A proton
beam at 200 MeV in the FODO cell used in Section VII B.
Red rectangle - focusing quadrupole. Blue rectangle - defo-
cusing quadrupole.

Relaxation of an rms-matched, mismatched beam in a FODO lattice

Using 1M particles – freq solvers

�k(ft, ft�1)

�k(ft, f0)

t (lattice periods)t (lattice periods)

�k(ft, ft�1)

�k(ft, f0)

FIG. 11. Dynamics of an unbunched (4D) beam with n = 106

particles sampled from the distribution (67) in the FODO
channel shown in Fig. 10. The MMD between the distribution
on successive lattice periods γk(ft, ft−1) decays to near (but
remains slightly above) the level of noise (black line). The
MMD to the initial distribution γk(ft, f0) is largely unchanged
after the first 100 periods.

was used whose width along each dimension matches the
initial rms beam size in that dimension. In each case, self-
consistent tracking with transverse (2D) space charge us-
ing n = 106 particles was performed using the algorithm
described in [63]. The distribution relaxes quickly over
the first 100 periods, but fluctuations above the noise
level persist on a much longer time scale. This raises
the possibility that for 100 < t < 1000, the distribution
may accumulate changes at a rate that is too slow to be
resolved by comparing successive periods. However, the
fact that γk(ft, f0) is nearly constant over this interval
indicates that the size of any such accumulated changes
must remain small.

Figure 12 illustrates the time evolution of the parti-
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FIG. 12. Projections into the (x, px) plane of an initially
rms-matched (but non-stationary) distribution (67) evolving
in a periodic FODO channel, shown at four distinct lattice
periods t. The particles shown are those used to produce
Fig. 11. (Red) The complete simulated particle distribution.
(Black) A subset of initial conditions, illustrating dynamical
filamentation of the phase space.

cle distribution in the (x, px) plane. A subset of initial
conditions is highlighted in black, in order to visualize
the dynamics of the phase space points in more detail.
The phase space region highlighted in black filaments and
folds. Compare this behavior with the dynamics shown
in Fig. 9.

Fig. 13 shows the correlation Rk(t) between the distri-
bution at time t and the distribution at t = 0. Note that
Rk(t) converges to a fixed nonzero value within just a few
periods, and then remains constant. This indicates that
particle coordinates remain correlated with their initial
values indefinitely, and that the dynamics is not mixing.
This generally suggests the existence of invariants of mo-
tion in some regions of the phase space. A 2D plot of y(0)
versus y(1000) is also shown. Note that the correlations
are not easily visible. In fact, if Rk is computed using
only the initial and final values of y, neglecting all other
coordinates, then the corresponding value is 0.08. This
shows that Rk quantifies correlations present in higher
dimensions that are not easily visualized by viewing 2D
projections, a fact that was also illustrated in Figs. 5-6.

C. Treatment of beam loss

In the presence of beam loss, it may be of interest to
study the dynamics of the beam on a bounded subregion
E of the phase space (e.g., defined by the vacuum cham-
ber or by the dynamic aperture). For example, one may
study the relaxation of the distribution defined by those
particles that remain indefinitely within the region E. In

Relaxation of an rms-matched, mismatched beam in a FODO lattice

Using 1M particles – freq solvers
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FIG. 13. Dynamics of an unbunched (4D) beam with n = 106

particles sampled from the distribution (67) in the FODO
channel shown in Fig. 10. The correlation Rk(t) between
the distribution after t periods and the initial distribution at
t = 0 is shown. Correlations appear to persist well-above the
level of the noise (black curve). (Inset) Plot of initial y vs.
final y after 1K periods, showing that the correlations are not
easily visible in low-dimensional projections.

this case, the beam distribution function ft satisfies:∫
E

ft(X)dX = χt, 0 ≤ χt ≤ 1, (68)

where χt denotes the (possibly time-dependent) fraction
of beam particles that lie within the region E.

The formalism of the previous section may be modified
to treat this case as follows.

• In the calculation of (21-25) and (37-38), sum only
over those particles that lie within the desired re-
gion E. This is equivalent to modifying the kernel
k by setting k(X,X ′) = 0 if X /∈ E or X ′ /∈ E.

• In the calculation of (21-25) and (37-38), replace
the weight coefficients 1/m by particle weights wj
with

∑m
j=1 wj = χt, and similarly for 1/n.

One may verify that many of the desired mathematical
properties of the MMD and HSICor still hold for these
modified statistics.

VIII. CONCLUSIONS

Modeling charged particle beams in the presence of
high intensity space charge, collective instabilities, or
strong nonlinear focusing can result in dynamical pro-
cesses that are difficult to characterize using typical nu-
merical diagnostics (based on the second-order beam mo-
ments or 2-D phase space projections). We have intro-
duced two numerical diagnostics originating in the ML
literature with highly desirable mathematical properties
that are straightforward to implement in parallel particle-
based simulation codes. The first is a measure of statisti-
cal distance known as the Maximum Mean Discrepancy



15

(γk), which serves as a measure of similarity between two
particle ensembles. The second is a measure of statisti-
cal dependence or correlation between random variables
known as the Hilbert Schmidt Correlation (Rk).

These quantities are useful for a variety of applica-
tions, including: matching a beam into a periodic trans-
port system, numerical benchmarking, detecting possi-
bly nonlinear phase space correlations, characterizing re-
laxation to a (quasi-)stationary state, and characterizing
mixing or decay of correlations within the beam. For
these applications, diagnostics based on statistical dis-
tance allow one to obtain insight that is not available
using conventional diagnostics. As an example, one may
quantify fine-grained differences between particle distri-
butions, which may occur in degrees of freedom that are
not easily visualized, and one may study the evolution
of 4-D or 6-D nonlinear correlations among phase space
variables within the beam, which are often not visible in
its 2-D phase space projections.

It is important to note that the quantitative results ob-
tained will depend on the choice of the kernel k. On one
hand, this kernel-dependence may be viewed as a disad-
vantage of the diagnostics described here. On the other
hand, one may view the choice of kernel as a natural way
to parameterize a large family of possible diagnostics, all
of which correctly capture the same underlying physical
processes. (This is a consequence of the mathematical
properties described in Sections IV-V.) In numerical ex-
periments the observed dynamical evolution of γk or Rk
was largely independent of the choice of kernel, although
this remains an active area of investigation. An alterna-
tive and parameter-free statistical distance with similar
mathematical properties is the Wasserstein distance Wp

(Section III B). In the future, the authors plan to inves-
tigate the feasibility of using efficient approximations to
Wp [64] for beam dynamics applications.

The diagnostics described here are well-suited to appli-
cations involving large simulation ensembles. For exam-
ple, quantities involving γk or Rk may be used as objec-
tives for accelerator design optimization or for training
machine learning models that require detailed informa-
tion about the beam distribution function. This raises
the possibility of tailoring the final beam phase space
density by using large-scale automated machine tuning.

Finally, although we have focused on the case of
charged particle beams, it is clear that these tools can
be applied without change to kinetic simulations of other
many-body systems such as plasmas or gravitational sys-
tems, which rely on the tracking of large particle ensem-
bles.
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APPENDIX A: COMMONLY-USED KERNELS

This Appendix lists several of the kernels k most com-
monly used for discrimination testing and independence
testing in ML. These kernels are all translation-invariant
and normalized as in (13), so that k(X,X) = 1 for all
X. All the kernels listed here have the property that the
quantity γk in (12) satisfies the metric conditions (i-iv)
and captures weak convergence, as described in Section
III.

Gaussian kernel (σ > 0) of dimension d:

kGaussian(X,X ′) = e−|X−X
′|2/2σ2

, (69a)

ΛGaussian(ω) =
e−σ

2|ω|2/2

(2πσ2)d/2
. (69b)

Laplace kernel (σ > 0) of dimension d:

kLaplace(X,X ′) = e−|X−X
′|/σ, (70a)

ΛLaplace(ω) =
σd

π(d+1)/2

Γ
(
d+1

2

)
(1 + σ2ω2)(d+1)/2

, (70b)

where Γ denotes the gamma function.
Matérn kernel (ν > 0, σ > 0) of dimension d:

kMatern(X,X ′) =
21−ν

Γ(ν)
ζνKν (ζ) , (71a)

ΛMatern(ω) =
2sσdννΓ(s)

(2π)d/2Γ(ν)

(
2ν + σ2 |ω|2

)−s
, (71b)

where Kν is the modified Bessel function of order ν, and
we abbreviate:

ζ =

√
2ν

σ
|X −X ′|, s = ν +

d

2
. (72)

Poisson kernel (0 < σ < 1) of dimension 1:

kPoisson(X,X ′) =
(1− σ)2

1− 2σ cos(X −X ′) + σ2
, (73a)

ΛPoisson(ω) =

∞∑
n=−∞

(
1− σ
1 + σ

)
σ|n|δ(ω − n). (73b)

Another class of kernels kWendland (of dimension d) is
constructed by using a polynomial with compact support
in the separation distance r = |X − X ′|/σ, where σ >
0. See [65, 66] for a detailed description of these. An
example for d = 1 is given by:

kWend(X,X ′) = (1− r)3(1 + 3r), r < 1, (74a)

ΛWend(ω) =
24σ

π

{
2 + cosωσ

(ωσ)4
− 3 sinωσ

(ωσ)5

}
. (74b)
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When working with a Gaussian kernel, an orthonormal
basis for the RKHS is given by {en}∞n=0 where [67]:

en(X) =

√
1

σ2nn!
e−X

2/2σ2

Xn. (75)

When working with the Poisson kernel, a (complex)
orthonormal basis for the RKHS is given by {en}∞n=−∞
with:

en(X) =

√
1− σ
1 + σ

σ|n|/2einX . (76)

A corresponding real basis is easily constructed.
We can construct a kernel k of higher dimension us-

ing kernels k(j) (j = 1, . . . , d) of lower dimension. For
example, if we write X = (X1, . . . , Xd) and X ′ =
(X ′1, . . . , X

′
d), then

k(X,X ′) =

d∏
j=1

k(j)(Xj , X
′
j). (77)

If the kernels k(j) are translation-invariant with spectral
densities Λ(j), then setting ω = (ω1, . . . , ωd) we have:

Λ(ω) =

d∏
j=1

Λ(j)(ωj). (78)

If the RKHS associated with the kernel k(j) has basis
e

(j)
n , then the RKHS associated with k has basis

en(X) =

d∏
j=1

e(j)
nj

(Xj), (79)

where n = (n1, . . . , nd) ranges over all possible indices.

APPENDIX B: DEFINITION OF MIXING

LetM be a map, and let f denote a probability density
that is invariant under the map, in the sense that:

f(M−1(X)) = f(X). (80)

Then the mapM is mixing with respect to the invariant
density f if for any two sets A and B [68]:

lim
t→∞

P (M−t(A) ∩B) = P (A)P (B), (81)

where

P (A) =

∫
A

f(X)dX (82)

denotes the probability that a point lies in A. Informally,
for any sets A and B, the sequence of sets M−t(A) be-
comes asymptotically independent of B as t→∞ [59].

There are many equivalent formulations of the condi-
tion (81). For our purposes, it is enough to know that a
mapM is mixing with respect to a density f if and only
if Rk(t) → 0 as t → ∞, where Rk(t) denotes the corre-
lation between the particle coordinates sampled from f
at t = 0 and the corresponding particle coordinates at
later time t. (See Section V.) This holds for all kernels
k satisfying the desirable properties described in Section
III C.

APPENDIX C: ERROR BOUNDS

We provide an upper bound for the error associated
with the estimates (21) and (25), in order to clarify the
dependence on the parameters n, m, (number of parti-
cles) and L (number of frequency samples).

Define a quantity ∆γrms by:

∆γrms = E[{γsample
k (f, g)− γk(f, g)}2]1/2, (83)

where γsample
k denotes the estimated value computed from

samples using (25), γk denotes the exact value given by
the integral (12), and E denotes the expected value taken
by averaging over independently sampled realizations of
f , g, and Λ.

Using the the triangle inequality property iii) of γk,
the Cauchy-Schwarz inequality, and basic properties of
expectation and variance, one obtains an upper bound
for ∆γrms given by:

∆γrms ≤
[

1

n

(
1− ||f ||2k

)
+

1

m

(
1− ||g||2k

)]1/2

+ min

{√
2γk(f, g),

1√
L
dTV (f, g)

}
. (84)

The meaning of || · ||k was defined in (27), while dTV
denotes the total variation distance between f and g,
defined here by:

dTV (f, g) =

∫
|f(X)− g(X)| dX ≤ 2. (85)

We make the following observations:
1) The first line of (84) denotes the contribution to the
error due to the finite number of particles, which scales
as O(n−1/2 +m−1/2).
2) In the special case that ||f ||k = ||g||k = 1, the first
line of (84) vanishes. This occurs, for example, if f and
g are each concentrated at a single point (i.e., they are
Dirac-delta functions).
3) The second line of (84) denotes the contribution to
the error due to the finite number of frequency samples,
which scales as O(L−1/2) when L → ∞. The coefficient
dTV (f, g) is small when f and g are similar.
4) When γk(f, g) → 0, the error contribution due to
frequency sampling vanishes, and the inequality can be
replaced by equality, yielding (26).
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5) In the limit L → ∞, (84) yields an upper bound for
the rms error associated with the estimate (21). A numerical example illustrating the behavior of ∆γrms

is shown in Fig. 1.

[1] H. Kandrup el al, “Chaotic collisionless evolution in
galaxies and charged-particle beams,” Ann. N. Y. Acad.
Sci. 1045, 12 (2005).

[2] C. Bohn, “Chaotic dynamics in charged-particle beams:
possible analogs of galactic evolution,” Ann. N. Y. Acad.
Sci. 1045, 34 (2005).

[3] D. Stratakis et al, “Experimental and numerical study of
phase mixing of an intense beam,” Phys. Rev. ST Accel.
Beams 12, 064201 (2009).

[4] Y. Levin et al, “Nonequilibrium statistical mechanics of
systems with long-range interactions,” Phys. Rep. 535,
1-60 (2014).

[5] B. B. Kadomtsev and O. P. Pogutse, “Collisionless relax-
ation in systems with Coulomb interactions,” Phys. Rev.
Lett. 25, 1155 (1970).

[6] Y. Levin, R. Pakter, and T. Teles, “Collisionless Relax-
ation in Non-Neutral Plasmas,” Phys. Rev. Lett. 100,
040604 (2008).

[7] A. Gretton et al, “A Kernel Two-Sample Test”, Journal
of Machine Learning Research 13, 723-773 (2012).

[8] T. Hofmann, B. Scholkopf, and A. J. Smola, “Kernel
Methods in Machine Learning,” The Annals of Statistics
36, 1171-1220 (2008).

[9] V. Paulsen and M. Raghupathi, An Introduction to the
Theory of Reproducing Kernel Hilbert Spaces, Cambridge
University Press, 2016.

[10] A. Gretton et al, “Measuring Statistical Dependence
with Hilbert-Schmidt Norms”, Technical report no.
140, Max Planck Institute for Biological Cybernet-
ics (2005), http://www.gatsby.ucl.ac.uk/~gretton/

papers/GreHerSmoBouSch05a.pdf.
[11] A. Campa, T. Dauxois, and S. Ruffo, “Statistical me-

chanics and dynamics of solvable models with long-range
interactions,” Physics Reports 480, 57-159 (2009).

[12] Y. Levin et al, “Nonequilibrium statistical mechanics of
systems with long-range interactions,” Physics Reports
535, 1-60 (2014).

[13] A. Campa et al, Physics of Long-Range Interacting Sys-
tems, Oxford Academic, Oxford, 2014.

[14] R. L. Liboff, Kinetic Theory: Classical, Quantum, and
Relativistic Descriptions, 3rd ed., Springer-Verlag, New
York (2003).

[15] Pierre-Henri Chavanis, “Kinetic theory of collisionless re-
laxation for systems with long-range interactions,” Phys-
ica A 606, 128089 (2022).

[16] C. Mouhot and C. Villani, “On Landau Damping,” Acta
Math. 207, 29 (2011).

[17] C. Villani, “Particle systems and nonlinear Landau
damping,” Phys. Plasmas 21, 030901 (2014).

[18] S. Jaffard et al, “Multifractal formalisms for multivariate
analysis,” Proc. R. Soc. A 475, 20190150 (2019).

[19] C. W. van Atta and W. Y. Chen, “Structure functions
of turbulence in the atmospheric boundary layer over the
ocean,” J. Fluid Mech. 44, 145-159 (1970).

[20] O. N. Boratav and R. B. Pelz, “Structures and structure
functions in the intertial range of turbulence,” Physics of

Fluids 9, 1400 (1997).
[21] R. T. Cerbus and W. I. Goldburg, “Information content

of turbulence,” Phys. Rev. E 88, 053012 (2013).
[22] L. Chevillard, B. Castaing, and E. Lévêque, ”On the
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