Abstract
Computational methods that predict and evaluate binding of ligands to receptors implicated in different pathologies have become crucial in modern drug design and discovery. Here, we describe protocols for using the recently developed package of computational tools for similarity-based drug discovery. The ProBiS stand-alone program and web server allow superimposition of protein structures against large protein databases and predict ligands based on detected binding site similarities. GenProBiS allows mapping of human somatic missense mutations related to cancer and non-synonymous single nucleotide polymorphisms and subsequent visual exploration of specific interactions in connection to these mutations. We describe protocols for using LiSiCA, a fast ligand-based virtual screening software that enables easy screening of large databases containing billions of small molecules. Finally, we show the use of BoBER, a web interface that enables user-friendly access to a large database of bioisosteric and scaffold hopping replacements.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395. https://doi.org/10.1124/pr.112.007336
Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 38:1686–1701. https://doi.org/10.1007/s12272-015-0640-5
Konc J, Janežič D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun Math Comput Chem 58:569–590
Burley SK, Berman HM, Kleywegt GJ et al (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallography: methods and protocols. Springer, New York, NY, pp 627–641
Konc J, Hodošček M, Ogrizek M et al (2013) Structure-based function prediction of uncharacterized protein using binding sites comparison. PLoS Comput Biol 9:e1003341. https://doi.org/10.1371/journal.pcbi.1003341
Konc J, Skrlj B, Erzen N et al (2017) GenProBiS: web server for mapping of sequence variants to protein binding sites. Nucleic Acids Res 45:W253–W259. https://doi.org/10.1093/nar/gkx420
Štular T, Lešnik S, Rožman K et al (2016) Discovery of Mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J Med Chem 59:11069–11078. https://doi.org/10.1021/acs.jmedchem.6b01277
Konc J, Janežič D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26:1160–1168. https://doi.org/10.1093/bioinformatics/btq100
Konc J, Janežič D (2014) ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res 42:W215–W220. https://doi.org/10.1093/nar/gku460
Konc J, Janežič D (2010) ProBiS: a web server for detection of structurally similar protein binding sites. Nucleic Acids Res 38:W436–W440. https://doi.org/10.1093/nar/gkq479
Konc J, Janežič D (2012) ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins. Nucleic Acids Res 40:W214–W221. https://doi.org/10.1093/nar/gks435
Konc J, Janežič D (2017) ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins. Prog Biophys Mol Biol 128:24–32. https://doi.org/10.1016/j.pbiomolbio.2017.02.005
Konc J, Česnik T, Konc JT et al (2012) ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures. J Chem Inf Model 52:604–612. https://doi.org/10.1021/ci2005687
Konc J, Depolli M, Trobec R et al (2012) Parallel-ProBiS: fast parallel algorithm for local structural comparison of protein structures and binding sites. J Comput Chem 33:2199–2203. https://doi.org/10.1002/jcc.23048
Konc J, Lešnik S, Janežič D (2015) Modeling enzyme-ligand binding in drug discovery. J Chem 7:48. https://doi.org/10.1186/s13321-015-0096-0
Miller BT, Singh RP, Klauda JB et al (2008) CHARMMing: a new, flexible web portal for CHARMM. J Chem Inf Model 48:1920–1929. https://doi.org/10.1021/ci800133b
Konc J, Miller BT, Štular T et al (2015) ProBiS-CHARMMing: web interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model 55:2308–2314. https://doi.org/10.1021/acs.jcim.5b00534
Lešnik S, Štular T, Brus B et al (2015) LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. J Chem Inf Model 55:1521–1528. https://doi.org/10.1021/acs.jcim.5b00136
Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559
DeLano WL (2002) The PyMOL molecular graphics system. http://www.Pymol.Org
Dilip A, Lešnik S, Štular T et al (2016) Ligand-based virtual screening interface between PyMOL and LiSiCA. J Chem 8:46. https://doi.org/10.1186/s13321-016-0157-z
Lešnik S, Škrlj B, Eržen N et al (2017) BoBER: web interface to the base of bioisosterically exchangeable replacements. J Chem 9:62. https://doi.org/10.1186/s13321-017-0251-x
Lešnik S, Konc J, Janežič D (2016) Scaffold hopping and bioisosteric replacements based on binding site alignments. Croat Chem Acta 89:431–437. https://doi.org/10.5562/cca2993
Rožman K, Lešnik S, Brus B et al (2017) Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorg Med Chem Lett 27:944–949. https://doi.org/10.1016/j.bmcl.2016.12.082
Reigada C, Valera-Vera EA, Sayé M et al (2017) Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 11:e0005472. https://doi.org/10.1371/journal.pntd.0005472
Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354
Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367
The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. https://doi.org/10.1093/nar/gku989
Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075
Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868. https://doi.org/10.1093/nar/gkv1222
Thorn CF, Klein TE, Altman RB (2013) PharmGKB: the pharmacogenomics knowledge base. In: Innocenti F, van Schaik RHN (eds) Pharmacogenomics: methods and protocols. Humana Press, Totowa, NJ, pp 311–320
O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Chem 3(33). https://doi.org/10.1186/1758-2946-3-33
Acknowledgments
Financial support through Slovenian Research Agency grant L7-8269 is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Science+Business Media, LLC
About this protocol
Cite this protocol
Lešnik, S., Konc, J. (2020). In Silico Laboratory: Tools for Similarity-Based Drug Discovery. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_1
Download citation
DOI: https://doi.org/10.1007/978-1-0716-0163-1_1
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-0162-4
Online ISBN: 978-1-0716-0163-1
eBook Packages: Springer Protocols