Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ranking Decision Making Units: The Cross-Efficiency Evaluation

  • Chapter
  • First Online:
Handbook of Operations Analytics Using Data Envelopment Analysis

Abstract

This chapter surveys the literature on the cross-efficiency evaluation, which is a methodology for ranking decision making units (DMUs) involved in a production process regarding their efficiency. Cross-efficiency evaluation has been developed in the context of analyses of relative efficiency carried out with Data Envelopment Analysis (DEA). It is usually claimed that the DEA efficiency scores cannot be used for ranking, because they result from a self-evaluation of units based on DMU-specific input and output weights. Cross-efficiency evaluation, in contrast, provides a peer-appraisal in which each DMU is evaluated from the perspective of all of the others by using their DEA weights. This makes it possible to derive an ordering. We make an exhaustive review of the existing work on the different issues related to the cross-efficiency evaluation. Other uses of this methodology different from the ranking of DMUs as well as the extensions that have been developed are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adler, N., Friedman, L., & Sinuany-Stern, Z. (2002). Review of ranking in the data envelopment analysis context. European Journal of Operational Research, 140(2), 249–265.

    Article  Google Scholar 

  • Alcaraz, J., Ramón, N., Ruiz, J. L., & Sirvent, I. (2013). Ranking ranges in cross-efficiency evaluations. European Journal of Operational Research, 226(3), 516–521.

    Article  Google Scholar 

  • Andersen, P., & Petersen, N. C. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1294.

    Article  Google Scholar 

  • Anderson, T. R., Hollingsworth, K., & Inman, L. B. (2002). The fixed weighting nature of a cross-evaluation model. Journal of Productivity Analysis, 18(1), 249–255.

    Article  Google Scholar 

  • Angulo-Meza, L., & Estellita Lins, M. P. (2002). Review of methods for increasing discrimination in data envelopment analysis. Annals of Operations Research, 116(1–4), 225–242.

    Article  Google Scholar 

  • Baker, R. C., & Talluri, S. (1997). A closer look at the use of data envelopment analysis for technology selection. Computers and Industrial Engineering, 32(1), 101–108.

    Article  Google Scholar 

  • Campos, L., & Muñoz, A. (1989). A subjective approach for ranking fuzzy numbers. Fuzzy Sets and Systems, 29, 145–153.

    Article  Google Scholar 

  • Chambers, R. G., Chung, Y., & Färe, R. (1998). Profit, directional distance functions and nerlovian efficiency. Journal of Optimization Theory and Applications, 98(2), 351–364.

    Article  Google Scholar 

  • Charnes, A., & Cooper, W. W. (1962). Programming with linear fractional functionals. Naval Research Logistics Quarterly, 9, 181–186.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., Seiford, L. M., & Stutz, J. (1983). Invariant multiplicative efficiency and piecewise Cobb-Douglas envelopments. Operations Research Letters, 2, 101–103.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring the efficiency of decision making units. European Journal of Operational Research, 2(6), 429–444.

    Article  Google Scholar 

  • Charnes, A., Cooper, W. W., & Thrall, R. M. (1991). A structure for classifying and characterizing efficiency and inefficiency in data envelopment analysis. Journal of Productivity Analysis, 2(3), 197–237.

    Article  Google Scholar 

  • Chen, T. Y. (2002). An assessment of technical efficiency and cross-efficiency in Taiwan’s electricity distribution sector. European Journal of Operational Research, 137(2), 421–433.

    Article  Google Scholar 

  • Cook, W. D., & Seiford, L. M. (2008). Data Envelopment Analysis (DEA)—Thirty years on. European Journal of Operational Research, 192(1), 1–17.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2014). DEA Cobb–Douglas frontier and cross-efficiency. Journal of the Operational Research Society, 65(2), 265–268.

    Article  Google Scholar 

  • Cook, W. D., & Zhu, J. (2015). DEA cross efficiency. In J. Zhu (Ed.), Data envelopment analysis: A handbook of models and methods. New York: Springer.

    Google Scholar 

  • Cooper, W. W., Ramón, N., Ruiz, J. L., & Sirvent, I. (2011). Avoiding large differences in weights in cross-efficiency evaluations: Application to the ranking of basketball players. Journal of Centrum Cathedra, 4(2), 197–215.

    Article  Google Scholar 

  • De Witte, K., & Hudrlikova, L. (2013). What about excellence in teaching? A benevolent ranking of universities. Scientometrics, 96, 337–364.

    Article  Google Scholar 

  • Despotis, D. K. (2002). Improving the discriminating power of DEA: Focus on globally efficient units. Journal of the Operational Research Society, 53(3), 314–323.

    Article  Google Scholar 

  • Doyle, J. R., & Green, R. H. (1994a). Efficiency and cross-efficiency in DEA: Derivations, meanings and uses. Journal of the Operational Research Society, 45(5), 567–578.

    Article  Google Scholar 

  • Doyle, J. R., & Green, R. H. (1994b). Self and peer appraisal in Higher Education. Higher Education, 28(2), 241–264.

    Article  Google Scholar 

  • Du, J., Cook, W. D., Liang, L., & Zhu, J. (2014). Fixed cost and resource allocation based on DEA cross-efficiency. European Journal of Operational Research, 235(1), 206–214.

    Article  Google Scholar 

  • Dubois, D., & Prade, H. (1980). Systems of linear fuzzy constraints. Fuzzy Sets and Systems, 3(1), 37–48.

    Article  Google Scholar 

  • Ertay, T., & Ruan, D. (2005). Data envelopment analysis based decision model for optimal operator allocation in CMS. European Journal of Operational Research, 164(3), 800–810.

    Article  Google Scholar 

  • Falagario, M., Sciancalepore, F., Costantino, N., & Pietroforte, R. (2012). Using a DEA-cross efficiency approach in public procurement tenders. European Journal of Operational Research, 218(2), 523–529.

    Article  Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of Royal Statistical Society, Series A, General., 120(3), 253–281.

    Article  Google Scholar 

  • Friedman, L., & Sinuany-Stern, Z. (1997). Scaling units via the canonical correlation analysis and the data envelopment analysis. European Journal of Operational Research, 100(3), 629–637.

    Article  Google Scholar 

  • Ganley, J. A., & Cubbin, J. S. (1992). Public sector efficiency measurement: Applications of data envelopment analysis. Amsterdam: North-Holland.

    Google Scholar 

  • Green, R., Doyle, J., & Cook, W. (1996). Preference voting and project ranking using DEA and cross-evaluation. European Journal of Operational Research, 90(3), 461–472.

    Article  Google Scholar 

  • Guo, P., & Tanaka, H. (2001). Fuzzy DEA: A perceptual evaluation method. Fuzzy Sets and Systems, 119, 149–160.

    Article  Google Scholar 

  • Gutiérrez, O., & Ruiz, J. L. (2013a). Data envelopment analysis and cross-efficiency evaluation in the management of sports teams: The assessment of game performance of players in the Spanish handball league. Journal of Sport Management, 27(3), 217–229.

    Google Scholar 

  • Gutiérrez, O., & Ruiz, J. L. (2013b). Game performance versus competitive performance in the world championship of handball 2011. Journal of Human Kinetics, 36(1), 137–147.

    Article  Google Scholar 

  • Halme, M., Joro, T., Korhonen, P., Salo, S., & Wallenius, J. (1999). A value efficiency approach to incorporating preference information in data envelopment analysis. Management Science, 45(1), 103–115.

    Article  Google Scholar 

  • Hashimoto, A. (1997). A ranked voting system using a DEA/AR exclusion model: A note. European Journal of Operational Research, 97, 600–604.

    Article  Google Scholar 

  • Hosseinzadeh Lotfi, F., Jahanshahloo, G. R., Khodabakhshi, M., Rostamy-Malkhlifeh, M., Moghaddas, Z., & Vaez-Ghasemi, M. (2013). A review of ranking models in data envelopment analysis. Journal of Applied Mathematics, Article ID 492421, 20 p.

    Google Scholar 

  • Kao, C., & Hung, H. T. (2005). Data envelopment analysis with common weights: The compromise solution approach. Journal of the Operational Research Society, 56(10), 1196–1203.

    Article  Google Scholar 

  • Kao, C., & Liu, S. T. (2000). Fuzzy efficiency measures in data envelopment analysis. Fuzzy Sets and Systems, 113, 427–437.

    Article  Google Scholar 

  • Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454.

    Article  Google Scholar 

  • León, T., Ramón, N., Ruiz, J. L., & Sirvent, I. (2014). Using induced ordered weighted averaging (IOWA) operators for aggregation in cross-efficiency evaluations. International Journal of Intelligent Systems, 29(12), 1100–1116.

    Article  Google Scholar 

  • Li, X.-B., & Reeves, G. R. (1999). A multiple criteria approach to data envelopment analysis. European Journal of Operational Research, 115, 507–517.

    Article  Google Scholar 

  • Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008a). Alternative secondary goals in DEA cross-efficiency evaluation. International Journal of Production Economics, 113(2), 1025–1030.

    Article  Google Scholar 

  • Liang, L., Wu, J., Cook, W. D., & Zhu, J. (2008b). The DEA game cross-efficiency model and its Nash equilibrium. Operations Research, 56(5), 1278–1288.

    Article  Google Scholar 

  • Lim, S., Kwang, W. O., & Zhu, J. (2014). Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market. European Journal of Operational Research, 236(1), 361–368.

    Article  Google Scholar 

  • Lim, S., & Zhu, J. (2015a). DEA cross-efficiency evaluation under variable returns to scale. Journal of the Operational Research Society, 66(3), 476–487.

    Article  Google Scholar 

  • Lim, S., & Zhu, J. (2015b). DEA cross efficiency under variable returns to scale. In J. Zhu (Ed.), Data envelopment analysis: A handbook of models and methods. New York: Springer.

    Google Scholar 

  • Liu, J. S., Lu, L. Y. Y., & Lu, W.-M. (2016). Research fronts in data envelopment analysis. Omega, 58, 33–45.

    Article  Google Scholar 

  • Liu, F. H. F., & Peng, H. H. (2008). Ranking of units on the DEA frontier with common weights. Computers and Operations Research, 35(5), 1624–1637.

    Article  Google Scholar 

  • Liu, F. H. F., & Peng, H. H. (2009). A systematic procedure to obtain a preferable and robust ranking of units. Computers and Operations Research, 36(4), 1012–1025.

    Article  Google Scholar 

  • Lu, W. M., & Lo, S. F. (2007). A closer look at the economic-environmental disparities for regional development in China. European Journal of Operational Research, 183(2), 882–894.

    Article  Google Scholar 

  • Oral, M., Kettani, O., & Lang, P. (1991). A methodology for collective evaluation and selection of industrial R&D projects. Management Science, 37(7), 871–885.

    Article  Google Scholar 

  • Pedraja-Chaparro, F., Salinas-Jimenez, J., & Smith, P. (1997). On the role of weight restrictions in data envelopment analysis. Journal of Productivity Analysis, 8(2), 215–230.

    Article  Google Scholar 

  • Ramón, N., Ruiz, J. L., & Sirvent, I. (2010a). A multiplier bound approach to assess relative efficiency in DEA without slacks. European Journal of Operational Research, 203(1), 261–269.

    Article  Google Scholar 

  • Ramón, N., Ruiz, J. L., & Sirvent, I. (2010b). On the choice of weights profiles in cross-efficiency evaluations. European Journal of Operational Research, 207(3), 1564–1572.

    Article  Google Scholar 

  • Ramón, N., Ruiz, J. L., & Sirvent, I. (2011). Reducing differences between profiles of weights: A “peer-restricted” cross-efficiency evaluation. Omega, 39(6), 634–641.

    Article  Google Scholar 

  • Ramón, N., Ruiz, J. L., & Sirvent, I. (2012). Common sets of weights as summaries of DEA profiles of weights: With an application to the ranking of professional tennis players. Expert Systems with Applications, 39, 4882–4889.

    Article  Google Scholar 

  • Ramón, N., Ruiz, J. L., & Sirvent, I. (2014). Dominance relations and ranking of units by using interval number ordering with cross-efficiency intervals. Journal of the Operational Research Society, 65(9), 1336–1343.

    Article  Google Scholar 

  • Roll, Y., Cook, W. D., & Golany, B. (1991). Controlling factor weights in data envelopment analysis. IEEE Transactions, 23(1), 2–9.

    Article  Google Scholar 

  • Roll, Y., & Golany, B. (1993). Alternate methods of treating factor weights in DEA. Omega, 21(1), 99–109.

    Article  Google Scholar 

  • Ruiz, J. L. (2013). Cross-efficiency evaluation with directional distance functions. European Journal of Operational Research, 228(1), 181–189.

    Article  Google Scholar 

  • Ruiz, J. L., Pastor, D., & Pastor, J. T. (2013). Assessing professional tennis players using Data Envelopment Analysis (DEA). Journal of Sports Economics, 14(3), 276–302.

    Article  Google Scholar 

  • Ruiz, J. L., & Sirvent, I. (2012). On the DEA total weight flexibility and the aggregation in cross-efficiency evaluations. European Journal of Operational Research, 223(3), 732–738.

    Google Scholar 

  • Ruiz, J.L., & Sirvent, I. (2016) Fuzzy cross-efficiency evaluation: a possibility approach. Fuzzy Optimization and Decision Making (DOI 10.1007/s10700-016-9240-1).

    Google Scholar 

  • Sexton, T. R., Silkman, R. H., & Hogan, A. J. (1986). Data envelopment analysis: Critique and extensions. In R. H. Silkman (Ed.), Measuring efficiency: An assessment of data envelopment analysis (pp. 73–105). San Francisco: Jossey-Bass.

    Google Scholar 

  • Sinuany-Stern, Z., Mehrez, A., & Barboy, A. (1994). Academic departments efficiency via data envelopment analysis. Computers and Operations Research, 21(5), 543–556.

    Article  Google Scholar 

  • Sirvent, I., & León, T. (2014). Cross-efficiency in Fuzzy Data Envelopment Analysis (FDEA): Some proposals. In A. Emrouznejad & M. Tavana (Eds.), Studies in fuzziness and soft computing (Vol. 309, pp. 101–116). Berlin Heidelberg: Springer.

    Google Scholar 

  • Sueyoshi, T. (1999). DEA non-parametric ranking test and index measurement: Slack-adjusted DEA and an application to Japanese agriculture cooperatives. Omega, 27(3), 315–326.

    Article  Google Scholar 

  • Talluri, S., & Yoon, K. P. (2000). Cone-ratio DEA approach for AMT justification. International Journal of Production Economics, 66(2), 19–129.

    Article  Google Scholar 

  • Thanassoulis, E., Portela, M. C. S., & Allen, R. (2004). Incorporating value judgments in DEA. In W. W. Cooper, L. W. Seiford, & J. Zhu (Eds.), Handbook on data envelopment analysis. Norwell: Kluwer.

    Google Scholar 

  • Tone, K. (2002). A slacks-based measure of super-efficiency in data envelopment analysis. European Journal of Operational Research, 143(1), 32–41.

    Article  Google Scholar 

  • Torgersen, A. M., Foørsund, F. R., & Kittelsen, S. A. C. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7(4), 379–398.

    Article  Google Scholar 

  • Troutt, M. D. (1997). Derivation of the maximin efficiency ratio model from the maximum decisional efficiency principle. Annals of Operations Research, 73, 323–338.

    Article  Google Scholar 

  • Wang, Y. M., & Chin, K. S. (2010a). A neutral DEA model for cross-efficiency evaluation and its extension. Expert Systems with Applications, 37(5), 3666–3675.

    Article  Google Scholar 

  • Wang, Y. M., & Chin, K. S. (2010b). Some alternative models for DEA cross-efficiency evaluation. International Journal of Production Economics, 128(1), 332–338.

    Article  Google Scholar 

  • Wang, Y. M., & Chin, K. S. (2011). The use of OWA operator weights for cross-efficiency aggregation. Omega, 39(5), 493–503.

    Article  Google Scholar 

  • Wang, Y. M., Chin, K. S., & Wang, S. (2012). DEA models for minimizing weight disparity in cross-efficiency evaluation. Journal of the Operational Research Society, 63(8), 1079–1088.

    Article  Google Scholar 

  • Wang, Y. M., & Luo, Y. (2009). On rank reversal in decision analysis. Mathematical and Computer Modelling, 49(5–6), 1221–1229.

    Article  Google Scholar 

  • Wang, Y. M., & Parkan, C. (2005). A minimax disparity approach for obtaining OWA operator weights. Information Sciences, 175(1–2), 20–29.

    Article  Google Scholar 

  • Wang, Y. M., & Wang, S. (2013). Approaches to determining the relative importance weights for cross-efficiency aggregation in data envelopment analysis. Journal of the Operational Research Society, 64(1), 60–69.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Chen, Y. (2009a). DEA game cross-efficiency approach to Olympic rankings. Omega, 37(4), 909–918.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Yang, F. (2009b). Achievement and benchmarking of countries at the Summer Olympics using cross-efficiency evaluation method. European Journal of Operational Research, 197(2), 722–730.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Yang, F. (2009c). Determination of the weights for the ultimate cross-efficiency using Shapley value in cooperative game. Expert Systems with Applications, 36(1), 872–876.

    Article  Google Scholar 

  • Wu, J., Liang, L., & Zha, Y. (2008). Determination of the weights of ultimate cross efficiency based on the solution of nucleolus in cooperative game. Systems Engineering—Theory & Practice, 28(5), 92–97.

    Article  Google Scholar 

  • Wu, J., Sun, J., Liang, L., & Zha, Y. (2011). Determination of weights for ultimate cross efficiency using Shannon entropy. Expert Systems with Applications, 38(5), 5162–5165.

    Article  Google Scholar 

  • Yager, R. R. (1981). A procedure for ordering fuzzy sets of the unit interval. Information Sciences, 24, 143–161.

    Article  Google Scholar 

  • Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multi-criteria decision making. IEEE Transactions on Systems, Man, and Cybernetics, 18(1), 183–190.

    Article  Google Scholar 

  • Yang, F., Ang, S., Qiong, X., & Yang, C. (2012). Ranking DMUs by using interval DEA cross efficiency matrix with acceptability analysis. European Journal of Operational Research, 223(2), 483–488.

    Article  Google Scholar 

  • Zhu, J. (1998). Data envelopment analysis vs. principal component analysis: An illustrative study of economic performance of Chinese cities. European Journal of Operational Research, 111(1), 50–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José L. Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ruiz, J.L., Sirvent, I. (2016). Ranking Decision Making Units: The Cross-Efficiency Evaluation. In: Hwang, SN., Lee, HS., Zhu, J. (eds) Handbook of Operations Analytics Using Data Envelopment Analysis. International Series in Operations Research & Management Science, vol 239. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-7705-2_1

Download citation

Publish with us

Policies and ethics