Abstract
Within the last decade, bioinformatics has moved from command line scripts dedicated to single experiments towards production grade software integrated in experimental workflows providing a rich environment for biological investigation. Located at the interface between the scientists, their experiments, and the community, bioinformatics acts as a gateway to a wide source of information. This chapter does not list tools and methods, but rather hints at how bioinformatics can help in improving biological projects, all the way from their initial design to the dissemination of the results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bromenshenk JJ, Henderson CB, Wick CH et al (2010) Iridovirus and microsporidian linked to honey bee colony decline. PLoS One 5:e13181
Foster LJ (2011) Interpretation of data underlying the link between colony collapse disorder (CCD) and an invertebrate iridescent virus. Mol Cell Proteomics 10:M110.006387
Ma K, Vitek O, Nesvizhskii AI (2012) A statistical model-building perspective to identification of MS/MS spectra with PeptideProphet. BMC Bioinformatics 13 Suppl 16:S1
Vaudel M, Burkhart JM, Sickmann A et al (2011) Peptide identification quality control. Proteomics 11:2105–2114
Colaert N, Degroeve S, Helsens K et al (2011) Analysis of the resolution limitations of peptide identification algorithms. J Proteome Res 10:5555–5561
Knudsen GM, Chalkley RJ (2011) The effect of using an inappropriate protein database for proteomic data analysis. PLoS One 6:e20873
Szklarczyk D, Franceschini A, Kuhn M et al (2011) The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 39:D561–D568
Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40:D841–D846
Sherman BT, da Huang W, Tan Q et al (2007) DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinformatics 8:426
Haw R, Hermjakob H, D’Eustachio P et al (2011) Reactome pathway analysis to enrich biological discovery in proteomics data sets. Proteomics 11:3598–3613
Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
Hornbeck PV, Kornhauser JM, Tkachev S et al (2012) PhosphoSitePlus: a comprehensive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res 40:D261–D270
Reddy TB, Riley R, Wymore F et al (2009) TB database: an integrated platform for tuberculosis research. Nucleic Acids Res 37:D499–D508
Forbes SA, Bindal N, Bamford S et al (2011) COSMIC: mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res 39:D945–D950
Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the Universal Protein knowledgebase. Nucleic Acids Res 32:D115–D119
Craig R, Cortens JP, Beavis RC (2004) Open source system for analyzing, validating, and storing protein identification data. J Proteome Res 3:1234–1242
Lane L, Argoud-Puy G, Britan A et al (2012) neXtProt: a knowledge platform for human proteins. Nucleic Acids Res 40:D76–D83
Vizcaino JA, Mueller M, Hermjakob H et al (2009) Charting online OMICS resources: a navigational chart for clinical researchers. Proteomics Clin Appl 3:18–29
Hahne H, Moghaddas Gholami A, Kuster B (2012) Discovery of O-GlcNAc-modified proteins in published large-scale proteome data. Mol Cell Proteomics 11:843–850
Matic I, Ahel I, Hay RT (2012) Reanalysis of phosphoproteomics data uncovers ADP-ribosylation sites. Nat Methods 9:771–772
Martens L, Nesvizhskii AI, Hermjakob H et al (2005) Do we want our data raw? Including binary mass spectrometry data in public proteomics data repositories. Proteomics 5: 3501–3505
Fannes T, Vandermarliere E, Schietgat L et al (2013) Predicting tryptic cleavage from proteomics data using decision tree ensembles. J Proteome Res 12:2253–2259
Vandermarliere E, Martens L (2013) Protein structure as a means to triage proposed PTM sites. Proteomics 13:1028–1035
Desiere F, Deutsch EW, King NL et al (2006) The PeptideAtlas project. Nucleic Acids Res 34:D655–D658
Martens L, Hermjakob H, Jones P et al (2005) PRIDE: the proteomics identifications database. Proteomics 5:3537–3545
Vizcaino JA, Foster JM, Martens L (2010) Proteomics data repositories: providing a safe haven for your data and acting as a springboard for further research. J Proteomics 73:2136–2146
Wang R, Fabregat A, Rios D et al (2012) PRIDE Inspector: a tool to visualize and validate MS proteomics data. Nat Biotechnol 30:135–137
Barsnes H, Martens L (2013) Crowdsourcing in proteomics: public resources lead to better experiments. Amino Acids 44:1129–1137
Levin Y (2011) The role of statistical power analysis in quantitative proteomics. Proteomics 11:2565–2567
Oberg AL, Vitek O (2009) Statistical design of quantitative mass spectrometry-based proteomic experiments. J Proteome Res 8: 2144–2156
Karp NA, Lilley KS (2009) Investigating sample pooling strategies for DIGE experiments to address biological variability. Proteomics 9:388–397
Geiger T, Cox J, Ostasiewicz P et al (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat Methods 7:383–385
Bantscheff M, Schirle M, Sweetman G et al (2007) Quantitative mass spectrometry in proteomics: a critical review. Anal Bioanal Chem 389:1017–1031
Vaudel M, Sickmann A, Martens L (2010) Peptide and protein quantification: a map of the minefield. Proteomics 10:650–670
Domon B, Aebersold R (2010) Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol 28:710–721
Vaudel M, Burkhart JM, Radau S et al (2012) Integral quantification accuracy estimation for reporter ion-based quantitative proteomics (iQuARI). J Proteome Res 11:5072–5080
Vaudel M, Burkhart JM, Breiter D et al (2012) A complex standard for protein identification, designed by evolution. J Proteome Res 11:5065–5071
Muth T, Benndorf D, Reichl U et al (2013) Searching for a needle in a stack of needles: challenges in metaproteomics data analysis. Mol Biosyst 9:578–585
Castellana NE, Payne SH, Shen Z et al (2008) Discovery and revision of Arabidopsis genes by proteogenomics. Proc Natl Acad Sci U S A 105:21034–21038
Moruz L, Pichler P, Stranzl T et al (2013) Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. Anal Chem 85:7777–7785
Jenden DJ, Cho AK (1979) Selected ion monitoring in pharmacology. Biochem Pharmacol 28:705–713
Yost RA, Enke CG (1979) Triple quadrupole mass spectrometry for direct mixture analysis and structure elucidation. Anal Chem 51: 1251–1264
Purvine S, Eppel JT, Yi EC et al (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850
Craig R, Cortens JP, Beavis RC (2005) The use of proteotypic peptide libraries for protein identification. Rapid Commun Mass Spectrom 19:1844–1850
Barsnes H, Eidhammer I, Martens L (2011) A global analysis of peptide fragmentation variability. Proteomics 11:1181–1188
Mallick P, Schirle M, Chen SS et al (2007) Computational prediction of proteotypic peptides for quantitative proteomics. Nat Biotechnol 25:125–131
Degroeve S, Martens L (2013) MS2PIP: a tool for MS/MS peak intensity prediction. Bioinformatics 29(24):3199–3203
Moruz L, Staes A, Foster JM et al (2012) Chromatographic retention time prediction for posttranslationally modified peptides. Proteomics 12:1151–1159
Nahnsen S, Kohlbacher O (2012) In silico design of targeted SRM-based experiments. BMC Bioinformatics 13 Suppl 16:S8
Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372
Orchard S, Jones P, Taylor C et al (2007) Proteomic data exchange and storage: the need for common standards and public repositories. Methods Mol Biol 367:261–270
Kinsinger CR, Apffel J, Baker M et al (2012) Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam Principles). J Proteome Res 11:1412–1419
Kinsinger CR, Apffel J, Baker M et al (2012) Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles). Proteomics 12:11–20
Kinsinger CR, Apffel J, Baker M et al (2011) Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam principles). Proteomics Clin Appl 5:580–589
Kinsinger CR, Apffel J, Baker M et al (2011) Recommendations for mass spectrometry data quality metrics for open access data (corollary to the Amsterdam Principles). Mol Cell Proteomics 10:O111.015446
Martens L (2011) Data management in mass spectrometry-based proteomics. Methods Mol Biol 728:321–332
Hakkinen J, Vincic G, Mansson O et al (2009) The proteios software environment: an extensible multiuser platform for management and analysis of proteomics data. J Proteome Res 8:3037–3043
Piggee C (2008) LIMS and the art of MS proteomics. Anal Chem 80:4801–4806
Stephan C, Kohl M, Turewicz M et al (2010) Using laboratory information management systems as central part of a proteomics data workflow. Proteomics 10:1230–1249
Weisser H, Nahnsen S, Grossmann J et al (2013) An automated pipeline for high-throughput label-free quantitative proteomics. J Proteome Res 12(4):1628–1644
Lange E, Gropl C, Reinert K et al (2006) High-accuracy peak picking of proteomics data using wavelet techniques. Pac Symp Biocomput 243–254
Martin SF, Falkenberg H, Dyrlund TF et al (2013) PROTEINCHALLENGE: crowd sourcing in proteomics analysis and software development. J Proteomics 88:41–46
Keller A, Eng J, Zhang N et al (2005) A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1:2005.0017
Sturm M, Bertsch A, Gropl C et al (2008) OpenMS—an open-source software framework for mass spectrometry. BMC Bioinformatics 9:163
Kessner D, Chambers M, Burke R et al (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536
Junker J, Bielow C, Bertsch A et al (2012) TOPPAS: a graphical workflow editor for the analysis of high-throughput proteomics data. J Proteome Res 11:3914–3920
Elias JE, Gygi SP (2010) Target-decoy search strategy for mass spectrometry-based proteomics. Methods Mol Biol 604:55–71
Everett LJ, Bierl C, Master SR (2010) Unbiased statistical analysis for multi-stage proteomic search strategies. J Proteome Res 9:700–707
Ivanov AR, Colangelo CM, Dufresne CP et al (2013) Interlaboratory studies and initiatives developing standards for proteomics. Proteomics 13:904–909
Martens L, Vizcaino JA, Banks R (2011) Quality control in proteomics. Proteomics 11:1015–1016
Tabb DL (2013) Quality assessment for clinical proteomics. Clin Biochem 46:411–420
Martens L (2013) Bringing proteomics into the clinic: the need for the field to finally take itself seriously. Proteomics Clin Appl 7: 388–391
Burkhart JM, Premsler T, Sickmann A (2011) Quality control of nano-LC-MS systems using stable isotope-coded peptides. Proteomics 11: 1049–1057
Staes A, Vandenbussche J, Demol H et al (2013) Asn3, a reliable, robust and universal lock mass for improved accuracy in LC-MS and LC-MS/MS. Anal Chem 85(22):11054–11060
Cote RG, Reisinger F, Martens L (2010) jmzML, an open-source Java API for mzML, the PSI standard for MS data. Proteomics 10:1332–1335
Sturm M, Kohlbacher O (2009) TOPPView: an open-source viewer for mass spectrometry data. J Proteome Res 8:3760–3763
Pichler P, Mazanek M, Dusberger F et al (2012) SIMPATIQCO: a server-based software suite which facilitates monitoring the time course of LC-MS performance metrics on Orbitrap instruments. J Proteome Res 11:5540–5547
Gonnelli G, Hulstaert N, Degroeve S et al (2012) Towards a human proteomics atlas. Anal Bioanal Chem 404:1069–1077
Foster JM, Degroeve S, Gatto L et al (2011) A posteriori quality control for the curation and reuse of public proteomics data. Proteomics 11:2182–2194
Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217
Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504
Bastian M, Heymann S, Jacomy M (2009) Gephi: an open source software for exploring and manipulating networks. International AAAI Conference on Weblogs and Social Media. https://gephi.org/
Nesvizhskii AI, Aebersold R (2005) Interpretation of shotgun proteomic data: the protein inference problem. Mol Cell Proteomics 4:1419–1440
Vaudel M, Sickmann A, Martens L (2013) Introduction to opportunities and pitfalls in functional mass spectrometry based proteomics. Biochim Biophys Acta 1844(1 Pt A):12–20
Flicek P, Amode MR, Barrell D et al (2011) Ensembl 2011. Nucleic Acids Res 39: D800–D806
Cox J, Mann M (2012) 1D and 2D annotation enrichment: a statistical method integrating quantitative proteomics with complementary high-throughput data. BMC Bioinformatics 13 Suppl 16:S12
Kasprzyk A, Keefe D, Smedley D et al (2004) EnsMart: a generic system for fast and flexible access to biological data. Genome Res 14: 160–169
Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049
Smedley D, Haider S, Ballester B et al (2009) BioMart—biological queries made easy. BMC Genomics 10:22
Villaveces JM, Jimenez RC, Garcia LJ et al (2011) Dasty3, a WEB framework for DAS. Bioinformatics 27:2616–2617
Barsnes H, Vizcaino JA, Eidhammer I et al (2009) PRIDE Converter: making proteomics data-sharing easy. Nat Biotechnol 27: 598–599
Cote RG, Griss J, Dianes JA et al (2012) The PRoteomics IDEntification (PRIDE) Converter 2 framework: an improved suite of tools to facilitate data submission to the PRIDE database and the ProteomeXchange consortium. Mol Cell Proteomics 11: 1682–1689
Martens L, Palazzi LM, Hermjakob H (2008) Data standards and controlled vocabularies for proteomics. Methods Mol Biol 484:279–286
Cote R, Reisinger F, Martens L et al (2010) The Ontology Lookup Service: bigger and better. Nucleic Acids Res 38:W155–W160
Barsnes H, Cote RG, Eidhammer I et al (2010) OLS dialog: an open-source front end to the ontology lookup service. BMC Bioinformatics 11:34
Klie S, Martens L, Vizcaino JA et al (2008) Analyzing large-scale proteomics projects with latent semantic indexing. J Proteome Res 7:182–191
(2013) In need of an upgrade. Nat Biotechnol 31:857. doi: 10.1038/nbt.2717
Acknowledgements
H.B. is supported by the Research Council of Norway. L.M. acknowledges the support of Ghent University (Multidisciplinary Research Partnership “Bioinformatics: from nucleotides to networks”), the PRIME-XS project, grant agreement number 262067, and the “ProteomeXchange” project, grant agreement number 260558, both funded by the European Union 7th Framework Program. The authors have no competing financial or commercial interests.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Science+Business Media New York
About this protocol
Cite this protocol
Vaudel, M., Barsnes, H., Martens, L., Berven, F.S. (2014). Bioinformatics for Proteomics: Opportunities at the Interface Between the Scientists, Their Experiments, and the Community. In: Martins-de-Souza, D. (eds) Shotgun Proteomics. Methods in Molecular Biology, vol 1156. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-0685-7_16
Download citation
DOI: https://doi.org/10.1007/978-1-4939-0685-7_16
Published:
Publisher Name: Humana Press, New York, NY
Print ISBN: 978-1-4939-0684-0
Online ISBN: 978-1-4939-0685-7
eBook Packages: Springer Protocols