Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Computational Approach to Study Gene Expression Networks

  • Protocol
  • First Online:
Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1471))

Abstract

We describe a simple computational approach that can be used for the study and simulation of regulatory networks. The advantage of this approach is that it requires neither computational background nor exact quantitative data about the biological system under study. Moreover, it is suitable for examining alternative hypotheses about the structure of a biological network. We used a tool called BioNSi (Biological Network Simulator) that is based on a simple computational model, which can be easily integrated as part of the lab routine, in parallel to experimental work. One benefit of this approach is that it enables the identification of regulatory proteins, which are missing from the experimental work. We describe the general methodology for modeling a network’s dynamics in the tool, and then give a point by point example for a specific known network, entry into meiosis in budding yeast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schaub MA, Henzinger TA, Fisher J (2007) Qualitative networks: a symbolic approach to analyze biological signaling networks. BMC Syst Biol 1:4

    Article  PubMed  PubMed Central  Google Scholar 

  2. Rubinstein A et al (2007) Faithful modeling of transient expression and its application to elucidating negative feedback regulation. Proc Natl Acad Sci U S A 104(15):6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Akman OE et al (2012) Digital clocks: simple Boolean models can quantitatively describe circadian systems. J R Soc Interface 9(74):2365–2382

    Article  PubMed  PubMed Central  Google Scholar 

  4. Yeheskely-Hayon D et al (2013) The roles of the catalytic and noncatalytic activities of Rpd3L and Rpd3S in the regulation of gene transcription in yeast. PLoS One 8(12):e85088

    Article  PubMed  PubMed Central  Google Scholar 

  5. Shannon P et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kassir Y et al (2003) Transcriptional regulation of meiosis in budding yeast. Int Rev Cytol 224:111–171

    Article  CAS  PubMed  Google Scholar 

  7. Kassir Y, Granot D, Simchen G (1988) IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52(6):853–862

    Article  CAS  PubMed  Google Scholar 

  8. Shefer-Vaida M, Sherman A, Ashkenazi T, Robzyk K, Kassir Y (1995) Positive and negative feedback loops affect the transcription of IME1, a positive regulator of meiosis in Saccharomyces cerevisiae. Dev Genet 16(3):219–228

    Article  CAS  PubMed  Google Scholar 

  9. Kadosh D, Struhl K (1997) Repression by Ume6 involves recruitment of a complex containing Sin3 corepressor and Rpd3 histone deacetylase to target promoters. Cell 89(3):365–371

    Article  CAS  PubMed  Google Scholar 

  10. Pnueli L, Edry I, Cohen M, Kassir Y (2004) Glucose and nitrogen regulate the switch from histone deacetylation to acetylation for expression of early meiosis-specific genes in budding yeast. Mol Cell Biol 24(12):5197–5208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sherman A, Shefer M, Sagee S, Kassir Y (1993) Post-transcriptional regulation of IME1 determines initiation of meiosis in Saccharomyces cerevisiae. Mol Gen Genet 237(3):375–384

    CAS  PubMed  Google Scholar 

  12. Colomina N, Gari E, Gallego C, Herrero E, Aldea M (1999) G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast. EMBO J 18(2):320–329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guttmann-Raviv N, Kassir Y (2002) Ime2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1. Mol Cell Biol 22(7):2047–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yona Kassir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rubinstein, A., Kassir, Y. (2017). A Computational Approach to Study Gene Expression Networks. In: Stuart, D. (eds) Meiosis. Methods in Molecular Biology, vol 1471. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6340-9_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6340-9_19

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6338-6

  • Online ISBN: 978-1-4939-6340-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics