Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein–Ligand Docking Method

  • Protocol
  • First Online:
Computational Drug Discovery and Design

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1762))

Abstract

Virtual screening is a computational technique for predicting a potent binding compound for a receptor protein from a ligand library. It has been a widely used in the drug discovery field to reduce the efforts of medicinal chemists to find hit compounds by experiments.

Here, we introduce our novel structure-based virtual screening program, PL-PatchSurfer, which uses molecular surface representation with the three-dimensional Zernike descriptors, which is an effective mathematical representation for identifying physicochemical complementarities between local surfaces of a target protein and a ligand. The advantage of the surface-patch description is its tolerance on a receptor and compound structure variation. PL-PatchSurfer2 achieves higher accuracy on apo form and computationally modeled receptor structures than conventional structure-based virtual screening programs. Thus, PL-PatchSurfer2 opens up an opportunity for targets that do not have their crystal structures. The program is provided as a stand-alone program at http://kiharalab.org/plps2. We also provide files for two ligand libraries, ChEMBL and ZINC Drug-like.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Walters WP, Stahl MT, Murcko MA (1998) Virtual screening—an overview. Drug Discov Today 3(4):160–178

    Article  CAS  Google Scholar 

  2. Schwartz J, Awale M, Reymond JL (2013) SMIfp (SMILES fingerprint) chemical space for virtual screening and visualization of large databases of organic molecules. J Chem Info Model 53(8):1979–1989

    Article  CAS  Google Scholar 

  3. Durant JL, Leland BA, Henry DR, Nourse JG (2002) Reoptimization of MDL keys for use in drug discovery. J Chem Inf Comput Sci 42(6):1273–1280

    Article  CAS  PubMed  Google Scholar 

  4. Raymond JW, Gardiner EJ, Willett P (2002) RASCAL: calculation of graph similarity using maximum common edge subgraphs. Comput J 45(6):631–644

    Article  Google Scholar 

  5. Bender A, Mussa HY, Glen RC (2004) Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance. J Chem Inf Comput Sci 44(5):1708–1718

    Article  CAS  PubMed  Google Scholar 

  6. Ballester PJ, Richards WG (2007) Ultrafast shape recognition to search compound databases for similar molecular shapes. J Comput Chem 28(10):1711–1723

    Article  CAS  PubMed  Google Scholar 

  7. Hawkins PCD, Skillman AG, Nicholls A (2007) Comparison of shape-matching and docking as virtual screening tools. J Med Chem 50(1):74–82

    Article  CAS  PubMed  Google Scholar 

  8. Jain AN (2007) Surflex-dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search. J Comput-Aided Mol Des 21(5):281–306

    Article  CAS  PubMed  Google Scholar 

  9. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Allen WJ, Balius TE, Mukherjee S, Brozell SR, Moustakus DT, Lang PT, Case DA, Kuntz ID, Rizzo RC (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36(15):1132–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Leach AR, Gillet VJ, Lewis RA, Taylor R (2010) Three-dimensional pharmacophore methods in drug discovery. J Med Chem 53(2):539–558

    Article  CAS  PubMed  Google Scholar 

  12. Wolber G, Langer T (2005) LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J Chem Info Model 45(1):160–169

    Article  CAS  Google Scholar 

  13. Shin WH, Christoffer CW, Wang J, Kihara D (2016) PL-PatchSurfer2: improved local surface matching-based virtual screening method that is tolerant to target and ligand structure variation. J Chem Info Model 56(9):1676–1691

    Article  CAS  Google Scholar 

  14. Novotni M, Klein R (2003) 3D Zernike descriptors for content based shape retrieval. In: Proceedings of eighth ACM symposium on solid modeling and applications, Washington, pp 216–225

    Google Scholar 

  15. Shin WH, Zhu X, Bures MG, Kihara D (2015) Three-dimensional compound comparison methods and their application in drug discovery. Molecules 20(7):12841–12962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu X, Xiong Y, Kihara D (2015) Large-scale binding ligand prediction by improved patch-based method Patch-Surfer2.0. Bioinformatics 31(5):707–713

    Article  CAS  PubMed  Google Scholar 

  17. Esquivel-Rodriguez J, Xiong Y, Han X, Gang S, Christoffer CW, Kihara D (2015) Navigating 3D electron microscopy maps with EM-SURFER. BMC Bioinf 16:181

    Article  Google Scholar 

  18. Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein-protein docking using region-based 3D Zernike descriptors. BMC Bioinf 10:407

    Article  Google Scholar 

  19. Baker NA, Sept D, Joseph S, Holst MJ, McCammon JA (2001) Electrostatics of nanosystems: application to microtubules and the ribosome. Proc Natl Acad Sci U S A 98(18):10037–10041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hawkins PCD, Skillman AG, Warren GL, Ellingson BA, Stahl MT (2010) Conformer generation with OMEGA: algorithm and validation using high quality structures from the protein databank and Cambridge Structural Database. J Chem Info Model 50(4):572–584

    Article  CAS  Google Scholar 

  21. Sael L, Kihara D (2012) Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison. Proteins 80(4):1177–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cheng T, Zhao Y, Li X, Lin F, Xu Y, Zhang X, Li Y, Wang R (2007) Computation of octanol−water partition coefficients by guiding an additive model with knowledge. J Chem Info Model 47(6):2140–2148

    Article  CAS  Google Scholar 

  23. Heiden W, Moeckel G, Brickmann J (1993) A new approach to analysis and display of local lipophilicity/hydrophilicity mapped on molecular surfaces. J Comput-Aided Mol Des 7(5):503–514

    Article  CAS  PubMed  Google Scholar 

  24. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersh T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminf 3:33

    Article  Google Scholar 

  25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera—a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  CAS  PubMed  Google Scholar 

  26. Li B, Turuvekere S, Agrawal M, La D, Ramani K, Kihara D (2008) Characterization of local geometry of protein surfaces with the visibility criterion. Proteins 71(2):670–683

    Article  CAS  PubMed  Google Scholar 

  27. Irwin JJ, Sterling T, Mysinger MM, Bolstad ES, Coleman E (2012) ZINC: a free tool to discover chemistry for biology. J Chem Inf Model 52(7):1757–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bento AP, Gaulton A, Hersey A, Bellis LJ, Chambers J, Davies M, Krüger FA, Light Y, Mak L, McGlinchey S, Nowotka M, Papadatos G, Santos R, Overington JP (2014) The ChEMBL bioactivity database: an update. Nucleic Acids Res 42(D1):D1083–D1090

    Article  CAS  PubMed  Google Scholar 

  29. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and compound databases. Nucleic Acids Res 44(D1):D1202–D1213

    Article  CAS  PubMed  Google Scholar 

  30. Lipinski CA (2000) Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 44(1):235–249

    Article  CAS  PubMed  Google Scholar 

  31. Volgt JH, Blenfalt B, Wang S, Nicklaus MC (2001) Comparison of the NCI open database with seven large chemical structural databases. J Chem Inf Comput Sci 41(3):702–712

    Article  Google Scholar 

  32. Wheeler DL, Iida M, Dunn EF (2009) The role of Src in solid tumors. Oncologist 14(7):667–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dehm SM, Bonham K (2004) SRC gene expression in human cancer: the role of transcriptional activation. Biochem Cell Biol 82(2):263–274

    Article  CAS  PubMed  Google Scholar 

  34. Huang N, Shoichet BK, Irwin JJ (2006) Benchmarking sets for molecular docking. J Med Chem 49(23):6789–6801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We acknowledge Dan K. Ntala for proofreading the manuscript. This work was partly supported by grants from the National Science Foundation (IIS1319551). D.K. also acknowledges supports from National Institutes of Health (R01GM097528, R01GM123055) and the National Science Foundation (IOS1127027, DMS1614777).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shin, WH., Kihara, D. (2018). Virtual Ligand Screening Using PL-PatchSurfer2, a Molecular Surface-Based Protein–Ligand Docking Method. In: Gore, M., Jagtap, U. (eds) Computational Drug Discovery and Design. Methods in Molecular Biology, vol 1762. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7756-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7756-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7755-0

  • Online ISBN: 978-1-4939-7756-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics