Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Differential Equivalence Yields Network Centrality

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems (ISoLA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11246))

Included in the following conference series:

Abstract

One of the most distinctive features of collective adaptive systems (CAS) is the presence of many individuals which interact with each other and with the environment, giving rise to a system-level behaviour that cannot be analyzed by studying the single agents in isolation. The interaction structure among the individuals of CAS is often captured by networks where nodes denote individuals and edges interactions. Understanding the interplay between the network topology and the CAS dynamics calls for tools from network theory in order, for instance, to identify the most important nodes of a network. Centrality measures address this task by assigning an importance measure to each node, a possible example being the famous PageRank algorithm of Google. In this paper we investigate the relationship between centrality measures and model reduction techniques, such as lumpability of Markov chains, which seek to reduce a model into a smaller one that can be processed more efficiently, while preserving information of interest. In particular, we focus on the relation between network centrality and backward differential equivalence, a generalization of lumpability to general dynamical systems. We show that any two backward differential equivalent nodes enjoy identical centrality measures. By efficiently obtaining substantial reductions of real-world networks from biochemistry, social sciences and computer engineering, we demonstrate the applicability of the result.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2), 5:1–5:37 (2009)

    Article  MathSciNet  Google Scholar 

  2. Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)

    Article  MathSciNet  Google Scholar 

  3. Barabasi, A.-L., Dezso, Z., Regan, E., Yook, S.-H., Oltvai, Z.: Scale-free and hierarchical structures in complex networks, vol. 661, no. 1 (2003)

    Google Scholar 

  4. Batagelj, V., Mrvar, A.: Pajek datasets, June 2006. http://vlado.fmf.uni-lj.si/pub/networks/data/

  5. Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: QEST, pp. 215–224 (2008)

    Google Scholar 

  6. Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: DSN, pp. 287–298 (2016)

    Google Scholar 

  7. Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–74 (1994)

    Article  MathSciNet  Google Scholar 

  8. Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise Reduction in complex biological switches. Sci. Rep. (2016)

    Google Scholar 

  9. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_6

    Chapter  MATH  Google Scholar 

  10. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)

    Google Scholar 

  11. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)

    Google Scholar 

  12. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2016)

    Google Scholar 

  13. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19

    Chapter  MATH  Google Scholar 

  14. Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)

    Article  Google Scholar 

  15. Davis, T.A., Yifan, H.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)

    MathSciNet  MATH  Google Scholar 

  16. Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)

    Article  MathSciNet  Google Scholar 

  17. Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)

    Article  Google Scholar 

  18. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)

    MATH  Google Scholar 

  19. Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11 (2013)

    Google Scholar 

  20. Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_23

    Chapter  Google Scholar 

  21. Jeong, H., Mason, S.P., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)

    Article  Google Scholar 

  22. Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)

    Article  Google Scholar 

  23. Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22

    Chapter  Google Scholar 

  24. Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parameter spaces in variability-aware software performance models (T). In: ASE, pp. 407–417 (2015)

    Google Scholar 

  25. Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp. 344–352 (1989)

    Google Scholar 

  26. Lerner, J.: Role assignments. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_9

    Chapter  Google Scholar 

  27. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005, pp. 177–187 (2005)

    Google Scholar 

  28. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)

    Article  Google Scholar 

  29. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data

  30. Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS 2000, Denver, pp. 873–879 (2000)

    Google Scholar 

  31. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC 2007), San Diego, October 2007

    Google Scholar 

  32. Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)

    Book  Google Scholar 

  33. Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)

    Article  MathSciNet  Google Scholar 

  34. Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)

    Article  Google Scholar 

  35. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  36. Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for markovian process algebra. In: CONCUR, pp. 380–394 (2012)

    Google Scholar 

  37. Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE TAC 61(4), 1099–1104 (2016)

    MathSciNet  MATH  Google Scholar 

  38. Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_4

    Chapter  Google Scholar 

  39. Vinnikov, A., Shalev-Shwartz, S.: K-means recovers ICA filters when independent components are sparse. In: ICML 2014, Beijing, 21–26 June 2014, pp. 712–720 (2014)

    Google Scholar 

  40. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Tognazzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A. (2018). Differential Equivalence Yields Network Centrality. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-03424-5_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-03423-8

  • Online ISBN: 978-3-030-03424-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics