Abstract
One of the most distinctive features of collective adaptive systems (CAS) is the presence of many individuals which interact with each other and with the environment, giving rise to a system-level behaviour that cannot be analyzed by studying the single agents in isolation. The interaction structure among the individuals of CAS is often captured by networks where nodes denote individuals and edges interactions. Understanding the interplay between the network topology and the CAS dynamics calls for tools from network theory in order, for instance, to identify the most important nodes of a network. Centrality measures address this task by assigning an importance measure to each node, a possible example being the famous PageRank algorithm of Google. In this paper we investigate the relationship between centrality measures and model reduction techniques, such as lumpability of Markov chains, which seek to reduce a model into a smaller one that can be processed more efficiently, while preserving information of interest. In particular, we focus on the relation between network centrality and backward differential equivalence, a generalization of lumpability to general dynamical systems. We show that any two backward differential equivalent nodes enjoy identical centrality measures. By efficiently obtaining substantial reductions of real-world networks from biochemistry, social sciences and computer engineering, we demonstrate the applicability of the result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2), 5:1–5:37 (2009)
Baier, C., Engelen, B., Majster-Cederbaum, M.E.: Deciding bisimilarity and similarity for probabilistic processes. J. Comput. Syst. Sci. 60(1), 187–231 (2000)
Barabasi, A.-L., Dezso, Z., Regan, E., Yook, S.-H., Oltvai, Z.: Scale-free and hierarchical structures in complex networks, vol. 661, no. 1 (2003)
Batagelj, V., Mrvar, A.: Pajek datasets, June 2006. http://vlado.fmf.uni-lj.si/pub/networks/data/
Bobbio, A., Gribaudo, M., Telek, M.: Analysis of large scale interacting systems by mean field method. In: QEST, pp. 215–224 (2008)
Bortolussi, L., Gast, N.: Mean field approximation of uncertain stochastic models. In: DSN, pp. 287–298 (2016)
Buchholz, P.: Exact and ordinary lumpability in finite Markov chains. J. Appl. Probab. 31, 59–74 (1994)
Cardelli, L., Csikász-Nagy, A., Dalchau, N., Tribastone, M., Tschaikowski, M.: Noise Reduction in complex biological switches. Sci. Rep. (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Efficient syntax-driven lumping of differential equations. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 93–111. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_6
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Forward and backward bisimulations for chemical reaction networks. In: CONCUR, pp. 226–239 (2015)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Comparing chemical reaction networks: a categorical and algorithmic perspective. In: LICS, pp. 485–494 (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Symbolic computation of differential equivalences. In: 43rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL) (2016)
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: ERODE: a tool for the evaluation and reduction of ordinary differential equations. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 310–328. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_19
Cardelli, L., Tribastone, M., Tschaikowski, M., Vandin, A.: Maximal aggregation of polynomial dynamical systems. PNAS 114(38), 10029–10034 (2017)
Davis, T.A., Yifan, H.: The university of florida sparse matrix collection. ACM Trans. Math. Softw. 38(1), 1:1–1:25 (2011)
Derisavi, S., Hermanns, H., Sanders, W.H.: Optimal state-space lumping in Markov chains. Inf. Process. Lett. 87(6), 309–315 (2003)
Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. PNAS 106(16), 6453–6458 (2009)
Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)
Iacobelli, G., Tribastone, M.: Lumpability of fluid models with heterogeneous agent types. In: DSN, pp. 1–11 (2013)
Iacobelli, G., Tribastone, M., Vandin, A.: Differential bisimulation for a Markovian process algebra. In: Italiano, G.F., Pighizzini, G., Sannella, D.T. (eds.) MFCS 2015. LNCS, vol. 9234, pp. 293–306. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48057-1_23
Jeong, H., Mason, S.P., Barabasi, A.-L., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411(6833), 41–42 (2001)
Katoen, J.-P., Zapreev, I.S., Hahn, E.M., Hermanns, H., Jansen, D.N.: The ins and outs of the probabilistic model checker MRMC. Perform. Eval. 68(2), 90–104 (2011)
Klimt, B., Yang, Y.: The enron corpus: a new dataset for email classification research. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS (LNAI), vol. 3201, pp. 217–226. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30115-8_22
Kowal, M., Tschaikowski, M., Tribastone, M., Schaefer, I.: Scaling size and parameter spaces in variability-aware software performance models (T). In: ASE, pp. 407–417 (2015)
Larsen, K.G., Skou, A.: Bisimulation through probabilistic testing. In: POPL, pp. 344–352 (1989)
Lerner, J.: Role assignments. In: Brandes, U., Erlebach, T. (eds.) Network Analysis: Methodological Foundations. LNCS, vol. 3418, pp. 216–252. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31955-9_9
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graphs over time: densification laws, shrinking diameters and possible explanations. In: KDD 2005, pp. 177–187 (2005)
Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data 1(1), 2 (2007)
Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection, June 2014. http://snap.stanford.edu/data
Meila, M., Shi, J.: Learning segmentation by random walks. In: NIPS 2000, Denver, pp. 873–879 (2000)
Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Measurement and analysis of online social networks. In: Proceedings of the 5th ACM/Usenix Internet Measurement Conference (IMC 2007), San Diego, October 2007
Newman, M.: Networks: An Introduction. Oxford University Press Inc., New York (2010)
Paige, R., Tarjan, R.E.: Three partition refinement algorithms. SIAM J. Comput. 16(6), 973–989 (1987)
Ravasz, E., Barabási, A.-L.: Hierarchical organization in complex networks. Phys. Rev. E 67, 026112 (2003)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)
Tschaikowski, M., Tribastone, M.: Exact fluid lumpability for markovian process algebra. In: CONCUR, pp. 380–394 (2012)
Tschaikowski, M., Tribastone, M.: Approximate reduction of heterogenous nonlinear models with differential hulls. IEEE TAC 61(4), 1099–1104 (2016)
Valmari, A., Franceschinis, G.: Simple O(m logn) time Markov chain lumping. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 38–52. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12002-2_4
Vinnikov, A., Shalev-Shwartz, S.: K-means recovers ICA filters when independent components are sparse. In: ICML 2014, Beijing, 21–26 June 2014, pp. 712–720 (2014)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications, vol. 8. Cambridge University Press, Cambridge (1994)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Tognazzi, S., Tribastone, M., Tschaikowski, M., Vandin, A. (2018). Differential Equivalence Yields Network Centrality. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Distributed Systems. ISoLA 2018. Lecture Notes in Computer Science(), vol 11246. Springer, Cham. https://doi.org/10.1007/978-3-030-03424-5_13
Download citation
DOI: https://doi.org/10.1007/978-3-030-03424-5_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-03423-8
Online ISBN: 978-3-030-03424-5
eBook Packages: Computer ScienceComputer Science (R0)