Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Registration of CT with PET: A Comparison of Intensity-Based Approaches

  • Conference paper
  • First Online:
Combinatorial Image Analysis (IWCIA 2018)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 11255))

Included in the following conference series:

Abstract

The integration of functional imaging modality provided by Positron Emission Tomography (PET) and associated anatomical imaging modality provided by Computed Tomography (CT) has become an essential procedure both in the evaluation of different types of malignancy and in radiotherapy planning. The alignment of these two exams is thus of great importance. In this research work, three registration approaches (1) intensity-based registration, (2) rigid translation followed by intensity-based registration and (3) coarse registration followed by fine-tuning were evaluated and compared. To characterize the performance of these methods, 161 real volume scans from patients involved in Hodgkin Lymphoma staging were used: CT volumes used for radiotherapy planning were registered with PET volumes before any treatment. Registration results achieved 78%, 60%, and 91% of accuracy for methods (1), (2) and (3), respectively. Registration methods validation was extended to a corresponding landmarks points distance calculation. Methods (1), (2) and (3) achieved a median improvement registration rate of 66% mm, 51% mm and 70% mm, respectively. The accuracy of the proposed methods was further confirmed by extending our experiments to other multimodal datasets and in a monomodal dataset with different acquisition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  2. Burnet, N., Thomas, S., Burton, K., Jefferies, S.: Defining the tumour and target volumes for radiotherapy. Cancer Imaging 4(2), 153–161 (2004)

    Article  Google Scholar 

  3. Chen, C., Chou, Y., Tagawa, N., Do, Y.: Computer-aided detection and diagnosis in medical imaging. Comput. Math. Methods Med. 2013, 2 p. (2013)

    Google Scholar 

  4. Clark, K., et al.: The cancer imaging archive (TCIA): maintaining and operating a public information repository. J. Digit. Imaging 26(6), 1045–1057 (2013)

    Article  Google Scholar 

  5. Domingues, I., Amorim, J., Abreu, P., Duarte, H., Santos, J.: Evaluation of oversampling data balancing techniques in the context of ordinal classification. In: International Joint Conference on Neural Networks (IJCNN) (2018)

    Google Scholar 

  6. El-Gamal, F., Elmogy, M., Atwan, A.: Current trends in medical image registration and fusion. Egypt. Inform. J. 17(1), 99–124 (2016)

    Article  Google Scholar 

  7. Jelercic, S., Rajer, M.: The role of PET-CT in radiotherapy planning of solid tumours. Radiol. Oncol. 49(1), 1–9 (2015)

    Article  Google Scholar 

  8. Jin, S., Li, D., Wang, H., Yin, Y.: Registration of PET and CT images based on multiresolution gradient of mutual information demons algorithm for positioning esophageal cancer patients. J. Appl. Clin. Med. Phys. 14(1), 50–61 (2013)

    Article  Google Scholar 

  9. Jung, Y.: Feature driven volume visualization of medical imaging data. Doctor of philosophy, University of Sydney (2015)

    Google Scholar 

  10. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  MathSciNet  Google Scholar 

  11. Marinelli, M., Positano, V., Tucci, F., Neglia, D., Landini, L.: Automatic PET-CT image registration method based on mutual information and genetic algorithms. Sci. World J. 2012, 12 p. (2012)

    Google Scholar 

  12. Mattes, D., Haynor, D., Vesselle, H., Lewellen, T., Eubank, W.: PET-CT image registration in the chest using free-form deformations. IEEE Trans. Med. Imaging 22(1), 120–128 (2003)

    Article  Google Scholar 

  13. Murphy, K., et al.: Evaluation of registration methods on thoracic CT: the EMPIRE10 challenge. IEEE Trans. Med. Imaging 30(11), 1901–1920 (2011)

    Article  Google Scholar 

  14. Nogueira, M., Abreu, P., Martins, P., Machado, P., Duarte, H., Santos, J.: An artificial neural networks approach for assessment treatment response in oncological patients using PET/CT images. BMC Med. Imaging 17(1), 13 (2017)

    Article  Google Scholar 

  15. Oliveira, F., Tavares, J.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Eng. 17(2), 73–93 (2014)

    Article  Google Scholar 

  16. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  17. Pereira, G.: Deep Learning techniques for the evaluation of response to treatment in Hodgkin Lymphoma. M.Sc. in biomedical engineering, University of Coimbra (2018)

    Google Scholar 

  18. Qi, X.S.: Image-guided radiation therapy. In: Maqbool, M. (ed.) An Introduction to Medical Physics. BMPBE, pp. 131–173. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61540-0_5

    Chapter  Google Scholar 

  19. Rueckert, D., Sonoda, L., Hayes, C., Hill, D., Leach, M., Hawkes, D.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18(8), 712–721 (1999)

    Article  Google Scholar 

  20. Sheikhbahaei, S., Mena, E., Pattanayak, P., Taghipour, M., Solnes, L., Subramaniam, R.: Molecular imaging and precision medicine: PET/CT and therapy response assessment in oncology. PET Clin. 12(1), 105–118 (2017)

    Article  Google Scholar 

  21. Shekhar, R., et al.: Automated 3-dimensional elastic registration of whole-body PET and CT from separate or combined scanners. J. Nucl. Med. 46(9), 1488–1496 (2005)

    Google Scholar 

  22. Siegel, R., Miller, K., Jemal, A.: Cancer statistics, 2017. CA: Cancer J. Clin. 67(1), 7–30 (2017)

    Google Scholar 

  23. Suh, J., Kwon, O., Scheinost, D., Sinusas, A., Cline, G., Papademetris, X.: CT-PET weighted image fusion for separately scanned whole body rat. Med. Phys. 39(1), 533–542 (2012)

    Article  Google Scholar 

  24. Thirion, J.: Image matching as a diffusion process: an analogy with Maxwell’s demons. Med. Image Anal. 2(3), 243–260 (1998)

    Article  Google Scholar 

  25. Townsend, D., Carney, J., Yap, J., Hall, N.: PET/CT today and tomorrow. J. Nucl. Med. 45(1), 4–14 (2004)

    Google Scholar 

  26. Trajkovii, M., Hedley, M., Trajkovic, M., Hedley, M.: FAST corner detection. Image Vis. Comput. 16(2), 75–87 (1998)

    Article  Google Scholar 

  27. Viergever, M., Maintz, J., Klein, S., Murphy, K., Staring, M., Pluim, J.: A survey of medical image registration-under review. Med. Image Anal. 33, 140–144 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This article is a result of the project NORTE-01-0145-FEDER-000027, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro H. Abreu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pereira, G., Domingues, I., Martins, P., Abreu, P.H., Duarte, H., Santos, J. (2018). Registration of CT with PET: A Comparison of Intensity-Based Approaches. In: Barneva, R., Brimkov, V., Tavares, J. (eds) Combinatorial Image Analysis. IWCIA 2018. Lecture Notes in Computer Science(), vol 11255. Springer, Cham. https://doi.org/10.1007/978-3-030-05288-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05288-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05287-4

  • Online ISBN: 978-3-030-05288-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics