Abstract
This paper presents VISIONE, a tool for large–scale video search. The tool can be used for both known-item and ad-hoc video search tasks since it integrates several content-based analysis and retrieval modules, including a keyword search, a spatial object-based search, and a visual similarity search. Our implementation is based on state-of-the-art deep learning approaches for the content analysis and leverages highly efficient indexing techniques to ensure scalability. Specifically, we encode all the visual and textual descriptors extracted from the videos into (surrogate) textual representations that are then efficiently indexed and searched using an off-the-shelf text search engine.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amato, G., Falchi, F., Gennaro, C., Rabitti, F.: Searching and annotating 100M images with YFCC100M-HNfc6 and MI-file. In: Proceedings of the 15th International Workshop on Content-Based Multimedia Indexing, CBMI 2017, Florence, Italy, 19–21 June 2017, pp. 26:1–26:4 (2017). https://doi.org/10.1145/3095713.3095740
Amato, G., Falchi, F., Gennaro, C., Vadicamo, L.: Deep permutations: deep convolutional neural networks and permutation-based indexing. In: Amsaleg, L., Houle, M.E., Schubert, E. (eds.) SISAP 2016. LNCS, vol. 9939, pp. 93–106. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46759-7_7
Awad, G., Snoek, C.G.M., Smeaton, A.F., Quénot, G.: TRECVid semantic indexing of video: a 6-year retrospective (2016)
Cobârzan, C., et al.: Interactive video search tools: a detailed analysis of the video browser showdown 2015. Multimedia Tools Appl. 76(4), 5539–5571 (2017). https://doi.org/10.1007/s11042-016-3661-2
Fellbaum, C. (ed.): WordNet: An Electronic Lexical Database. MIT Press, Cambridge (1998)
Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based image retrieval based on the lucene search engine library. In: Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp. 55–66. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15464-5_8
Gordo, A., Almazán, J., Revaud, J., Larlus, D.: End-to-end learning of deep visual representations for image retrieval. Int. J. Comput. Vis. 124(2), 237–254 (2017)
Jia, Y., et al.: Caffe: Convolutional architecture for fast feature embedding. arXiv preprint arXiv:1408.5093 (2014)
Jiang, Y.G., Wu, Z., Wang, J., Xue, X., Chang, S.F.: Exploiting feature and class relationships in video categorization with regularized deep neural networks. IEEE Trans. Patt. Anal. Mach. Intell. 40(2), 352–364 (2018). https://doi.org/10.1109/TPAMI.2017.2670560
Lokoc, J., Bailer, W., Schoeffmann, K., Muenzer, B., Awad, G.: On influential trends in interactive video retrieval: video browser showdown 2015–2017. IEEE Trans. Multimedia 20(12), 3361–3376 (2018). https://doi.org/10.1109/TMM.2018.2830110
LokoÄŤ, J., KovalÄŤĂk, G., SouÄŤek, T.: Revisiting SIRET video retrieval tool. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 419–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_44
Lokoč, J., Souček, T., Kovalčik, G.: Using an interactive video retrieval tool for lifelog data. In: Proceedings of the 2018 ACM Workshop on the Lifelog Search Challenge, LSC 2018, pp. 15–19. ACM, New York (2018). https://doi.org/10.1145/3210539.3210543
Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv (2018)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016). https://doi.org/10.1145/2812802
Tolias, G., Sicre, R., JĂ©gou, H.: Particular object retrieval with integral max-pooling of CNN activations. arXiv preprint arXiv:1511.05879 (2015)
Truong, T.D., et al.: Video search based on semantic extraction and locally regional object proposal. In: Schoeffmann, K., et al. (eds.) MMM 2018. LNCS, vol. 10705, pp. 451–456. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73600-6_49
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Patt. Anal. Mach. Intell. 40, 1452–1464 (2017)
Acknowledgements
This work was partially funded by “Smart News: Social sensing for breaking news”, CUP CIPE D58C15000270008, by VISECH ARCO-CNR, CUP B56J17001330004, and by “Automatic Data and documents Analysis to enhance human-based processes” (ADA), CUP CIPE D55F17000290009. We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Tesla K40 GPU used for this research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Amato, G. et al. (2019). VISIONE at VBS2019. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, WH., Vrochidis, S. (eds) MultiMedia Modeling. MMM 2019. Lecture Notes in Computer Science(), vol 11296. Springer, Cham. https://doi.org/10.1007/978-3-030-05716-9_51
Download citation
DOI: https://doi.org/10.1007/978-3-030-05716-9_51
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05715-2
Online ISBN: 978-3-030-05716-9
eBook Packages: Computer ScienceComputer Science (R0)