Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SL-AV Model: Numerical Weather Prediction at Extra-Massively Parallel Supercomputer

  • Conference paper
  • First Online:
Supercomputing (RuSCDays 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 965))

Included in the following conference series:

Abstract

The SL-AV global atmosphere model is used for operational medium-range and long-range forecasts at Hydrometcentre of Russia. The program complex uses the combination of MPI and OpenMP technologies. Currently, a new version of the model with the horizontal resolution about 10 km is being developed. In 2017, preliminary experiments have shown the scalability of the SL-AV model program complex up to 9000 processor cores with the efficiency of about 45% for grid dimensions of 3024 × 1513 × 51. The profiling analysis for these experiments revealed bottlenecks of the code: non-optimal memory access in OpenMP threads in some parts of the code, time losses in the MPI data exchanges in the dynamical core, and the necessity to replace some numerical algorithms. The review of model code improvements targeting the increase of its parallel efficiency is presented. The new code is tested at the new Cray XC40 supercomputer installed at Roshydromet Main Computer Center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. WGNE Overview of plans at NWP Centres with Global Forecasting Systems. http://wgne.meteoinfo.ru/nwp-systems-wgne-table/

  2. TOP500 Supercomputer sites. https://www.top500.org/

  3. Wedi, N.P., et al.: The modelling infrastructure of the integrated forecasting system: recent advances and future challenges. Technical Memorandum 760, ECMWF (2015)

    Google Scholar 

  4. Dynamical Core Evaluation Test Report for NOAA’s Next Generation Global Prediction System (NGGPS). https://www.weather.gov/media/sti/nggps/NGGPS%20Dycore%20Phase%202%20Test%20Report%20website.pdf

  5. Tolstykh, M.A., et al.: Development of the multiscale version of the SL-AV global atmosphere model. Russ. Meteor. Hydrol. 40, 374–382 (2015). https://doi.org/10.3103/s1068373915060035

    Article  Google Scholar 

  6. Fadeev, R.Yu., Ushakov, K.V., Kalmykov, V.V., Tolstykh, M.A., Ibrayev, R.A.: Coupled atmosphere–ocean model SLAV–INMIO: implementation and first results. Russ. J. Num. An. Math. Mod. 31, 329–337 (2016). https://doi.org/10.1515/rnam-2016-0031

    Article  MathSciNet  MATH  Google Scholar 

  7. Tolstykh, M., Shashkin, V., Fadeev, R., Goyman, G.: Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core. Geosci. Model Dev. 10, 1961–1983 (2017). https://doi.org/10.5194/gmd-10-1961-2017

    Article  Google Scholar 

  8. Geleyn, J.-F., et al.: Atmospheric parameterization schemes in Meteo-France’s ARPEGE N.W.P. model. In: Parameterization of Subgrid-Scale Physical Processes, ECMWF Seminar Proceedings, pp. 385–402. ECMWF, Reading, UK (1994)

    Google Scholar 

  9. Gerard, L., Piriou, J.-M., Brožková, R., Geleyn, J.-F., Banciu, D.: Cloud and precipitation parameterization in a Meso-Gamma-Scale operational weather prediction model. Mon. Weather Rev. 137, 3960–3977 (2009). https://doi.org/10.1175/2009MWR2750

    Article  Google Scholar 

  10. Tarasova, T., Fomin, B.: The use of new parameterizations for gaseous absorption in the CLIRAD-SW solar radiation code for models. J. Atmos. Ocean. Technol. 24, 1157–1162 (2007). https://doi.org/10.1175/JTECH2023.1

    Article  Google Scholar 

  11. Mlawer, E.J., Taubman, S.J., Brown, P.D.: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16663–16682 (1997). https://doi.org/10.1029/97jd00237

    Article  Google Scholar 

  12. Volodin, E.M., Lykossov, V.N.: Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya Atmos. Ocean. Phys. 34, 402–416 (1998)

    Google Scholar 

  13. Tolstykh, M., Fadeev, R., Goyman, G., Shashkin, V.: Further development of the parallel program complex of SL-AV atmosphere model. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 290–298. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_23

    Chapter  Google Scholar 

  14. Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric models – a review. Mon. Weather Rev. 119, 2206–2233 (1991)

    Article  Google Scholar 

  15. Cray XC40 specifications. https://www.cray.com/sites/default/files/resources/cray_xc40_specifications.pdf

  16. White III, J., Dongarra, J.: High-performance high-resolution tracer transport on a sphere. J. Comput. Phys. 230, 6778–6799 (2011). https://doi.org/10.1016/j.jcp.2011.05.008

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This study was carried out at Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences. The study presented in Sects. 2 and 3 was supported with the Russian Science Foundation grant No. 14-27-00126P, the work described in Sect. 4 was supported with the Russian Academy of Sciences Program for Basic Researches No. I.26P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Tolstykh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V., Lubov, S. (2019). SL-AV Model: Numerical Weather Prediction at Extra-Massively Parallel Supercomputer. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-05807-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-05806-7

  • Online ISBN: 978-3-030-05807-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics