Abstract
The SL-AV global atmosphere model is used for operational medium-range and long-range forecasts at Hydrometcentre of Russia. The program complex uses the combination of MPI and OpenMP technologies. Currently, a new version of the model with the horizontal resolution about 10 km is being developed. In 2017, preliminary experiments have shown the scalability of the SL-AV model program complex up to 9000 processor cores with the efficiency of about 45% for grid dimensions of 3024 × 1513 × 51. The profiling analysis for these experiments revealed bottlenecks of the code: non-optimal memory access in OpenMP threads in some parts of the code, time losses in the MPI data exchanges in the dynamical core, and the necessity to replace some numerical algorithms. The review of model code improvements targeting the increase of its parallel efficiency is presented. The new code is tested at the new Cray XC40 supercomputer installed at Roshydromet Main Computer Center.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
WGNE Overview of plans at NWP Centres with Global Forecasting Systems. http://wgne.meteoinfo.ru/nwp-systems-wgne-table/
TOP500 Supercomputer sites. https://www.top500.org/
Wedi, N.P., et al.: The modelling infrastructure of the integrated forecasting system: recent advances and future challenges. Technical Memorandum 760, ECMWF (2015)
Dynamical Core Evaluation Test Report for NOAA’s Next Generation Global Prediction System (NGGPS). https://www.weather.gov/media/sti/nggps/NGGPS%20Dycore%20Phase%202%20Test%20Report%20website.pdf
Tolstykh, M.A., et al.: Development of the multiscale version of the SL-AV global atmosphere model. Russ. Meteor. Hydrol. 40, 374–382 (2015). https://doi.org/10.3103/s1068373915060035
Fadeev, R.Yu., Ushakov, K.V., Kalmykov, V.V., Tolstykh, M.A., Ibrayev, R.A.: Coupled atmosphere–ocean model SLAV–INMIO: implementation and first results. Russ. J. Num. An. Math. Mod. 31, 329–337 (2016). https://doi.org/10.1515/rnam-2016-0031
Tolstykh, M., Shashkin, V., Fadeev, R., Goyman, G.: Vorticity-divergence semi-Lagrangian global atmospheric model SL-AV20: dynamical core. Geosci. Model Dev. 10, 1961–1983 (2017). https://doi.org/10.5194/gmd-10-1961-2017
Geleyn, J.-F., et al.: Atmospheric parameterization schemes in Meteo-France’s ARPEGE N.W.P. model. In: Parameterization of Subgrid-Scale Physical Processes, ECMWF Seminar Proceedings, pp. 385–402. ECMWF, Reading, UK (1994)
Gerard, L., Piriou, J.-M., Brožková, R., Geleyn, J.-F., Banciu, D.: Cloud and precipitation parameterization in a Meso-Gamma-Scale operational weather prediction model. Mon. Weather Rev. 137, 3960–3977 (2009). https://doi.org/10.1175/2009MWR2750
Tarasova, T., Fomin, B.: The use of new parameterizations for gaseous absorption in the CLIRAD-SW solar radiation code for models. J. Atmos. Ocean. Technol. 24, 1157–1162 (2007). https://doi.org/10.1175/JTECH2023.1
Mlawer, E.J., Taubman, S.J., Brown, P.D.: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102, 16663–16682 (1997). https://doi.org/10.1029/97jd00237
Volodin, E.M., Lykossov, V.N.: Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya Atmos. Ocean. Phys. 34, 402–416 (1998)
Tolstykh, M., Fadeev, R., Goyman, G., Shashkin, V.: Further development of the parallel program complex of SL-AV atmosphere model. In: Voevodin, V., Sobolev, S. (eds.) RuSCDays 2017. CCIS, vol. 793, pp. 290–298. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71255-0_23
Staniforth, A., Cote, J.: Semi-Lagrangian integration schemes for atmospheric models – a review. Mon. Weather Rev. 119, 2206–2233 (1991)
Cray XC40 specifications. https://www.cray.com/sites/default/files/resources/cray_xc40_specifications.pdf
White III, J., Dongarra, J.: High-performance high-resolution tracer transport on a sphere. J. Comput. Phys. 230, 6778–6799 (2011). https://doi.org/10.1016/j.jcp.2011.05.008
Acknowledgements
This study was carried out at Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences. The study presented in Sects. 2 and 3 was supported with the Russian Science Foundation grant No. 14-27-00126P, the work described in Sect. 4 was supported with the Russian Academy of Sciences Program for Basic Researches No. I.26P.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Tolstykh, M., Goyman, G., Fadeev, R., Shashkin, V., Lubov, S. (2019). SL-AV Model: Numerical Weather Prediction at Extra-Massively Parallel Supercomputer. In: Voevodin, V., Sobolev, S. (eds) Supercomputing. RuSCDays 2018. Communications in Computer and Information Science, vol 965. Springer, Cham. https://doi.org/10.1007/978-3-030-05807-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-05807-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-05806-7
Online ISBN: 978-3-030-05807-4
eBook Packages: Computer ScienceComputer Science (R0)