Abstract
We investigate a new approach for evaluating session-based information retrieval systems, based on Markov chains. In particular, we develop a new family of evaluation measures, inspired by random walks, which account for the probability of moving to the next and previous documents in a result list, to the next query in a session, and to the end of the session. We leverage this Markov chain to substitute what in existing measures is a fixed discount linked to the rank of a document or to the position of a query in a session with a stochastic average time to reach a document and the probability of actually reaching a given query. We experimentally compare our new family of measures with existing measures – namely, session DCG, Cube Test, and Expected Utility – over the TREC Dynamic Domain track, showing the flexibility of the proposed measures and the transparency in modeling the user dynamics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Advanced user dynamics that condition probabilities on the relevance of the viewed document, similar to ERR, are also possible with MsM but are left as future work.
References
Allan, J., et al.: Research frontiers in information retrieval - report from the third strategic workshop on information retrieval in Lorne (SWIRL 2018). SIGIR Forum 52(1), 34–90 (2018)
Amigó, E., Fang, H., Mizzaro, S., Zhai, C.: Report on the SIGIR 2017 workshop on axiomatic thinking for information retrieval and related tasks (ATIR). SIGIR Forum 51(3), 99–106 (2017)
Busin, L., Mizzaro, S.: Axiometrics: an axiomatic approach to information retrieval effectiveness metrics. In: Kurland, O., Metzler, D., Lioma, C., Larsen, B., Ingwersen, P. (eds.) Proceedings of the 4th International Conference on the Theory of Information Retrieval (ICTIR 2013), pp. 22–29. ACM Press, New York (2013)
Carterette, B.: System effectiveness, user models, and user utility: a conceptual framework for investigation. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 903–912. ACM, New York (2011). https://doi.org/10.1145/2009916.2010037
Chapelle, O., Metzler, D., Zhang, Y., Grinspan, P.: Expected reciprocal rank for graded relevance. In: Cheung, D.W.L., Song, I.Y., Chu, W.W., Hu, X., Lin, J.J. (eds.) Proceedings of the 18th International Conference on Information and Knowledge Management (CIKM 2009), pp. 621–630. ACM Press, New York (2009)
Chierichetti, F., Kumar, R., Raghavan, P.: Optimizing two-dimensional search results presentation. In: King, I., Nejdl, W., Li, H. (eds.) Proceedings of the 4th ACM International Conference on Web Searching and Data Mining (WSDM 2011), pp. 257–266. ACM Press, New York (2011)
Collins-Thompson, K., Callan, J.: Query expansion using random walk models. In: Herzog, O., Schek, H.J., Fuhr, N., Chowdhury, A., Teiken, W. (eds.) Proceedings of 14th International Conference on Information and Knowledge Management (CIKM 2005), pp. 704–711. ACM Press, New York (2005)
Daniłowicz, C., Baliński, J.: Document ranking based upon Markov chains. Inf. Process. Manag. 37(4), 623–637 (2001)
Ferrante, M., Ferro, N., Pontarollo, S.: A general theory of IR evaluation measures. IEEE Trans. Knowl. Data Eng. (TKDE). 31(3), 409–422 (2019)
Ferrante, M., Ferro, N., Maistro, M.: Injecting user models and time into precision via Markov chains. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2014, pp. 597–606. ACM, New York (2014). https://doi.org/10.1145/2600428.2609637
Ferro, N.: What does affect the correlation among evaluation measures? ACM Trans. Inf. Syst. (TOIS) 36(2), 19:1–19:40 (2017)
Fuhr, N.: Salton award lecture: information retrieval as engineering science. SIGIR Forum 46(2), 19–28 (2012)
Järvelin, K., Kekäläinen, J.: Cumulated gain-based evaluation of IR techniques. ACM Trans. Inf. Syst. (TOIS) 20(4), 422–446 (2002)
Järvelin, K., Price, S.L., Delcambre, L.M.L., Nielsen, M.L.: Discounted cumulated gain based evaluation of multiple-query IR sessions. In: Macdonald, C., Ounis, I., Plachouras, V., Ruthven, I., White, R.W. (eds.) ECIR 2008. LNCS, vol. 4956, pp. 4–15. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78646-7_4. http://dl.acm.org/citation.cfm?id=1793274.1793280
Kanoulas, E., Carterette, B., Clough, P.D., Sanderson, M.: Evaluating multi-query sessions. In: Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2011, pp. 1053–1062. ACM, New York (2011). https://doi.org/10.1145/2009916.2010056
Kendall, M.G.: Rank Correlation Methods. Griffin, Oxford (1948)
Lafferty, J., Zhai, C.: Document language models, query models, and risk minimization for information retrieval. In: Kraft, D.H., Croft, W.B., Harper, D.J., Zobel, J. (eds.) Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2001), pp. 111–119. ACM Press, New York (2001)
Liu, M., Liu, Y., Mao, J., Luo, C., Ma, S.: Towards designing better session search evaluation metrics. In: Collins-Thompson, K., Mei, Q., Davison, B., Liu, Y., Yilmaz, E. (eds.) Proceedings of the 41th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2018), pp. 1121–1124. ACM Press, New York (2018)
Luo, J., Wing, C., Yang, H., Hearst, M.: The water filling model and the cube test: multi-dimensional evaluation for professional search. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, CIKM 2013, pp. 709–714. ACM, New York (2013). https://doi.org/10.1145/2505515.2523648
Maxwell, K.T., Croft, W.B.: Compact query term selection using topically related text. In: Jones, G.J.F., Sheridan, P., Kelly, D., de Rijke, M., Sakai, T. (eds.) Proceedings of the 36th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2013), pp. 583–592. ACM Press, New York (2013)
Moffat, A., Zobel, J.: Rank-biased precision for measurement of retrieval effectiveness. ACM Trans. Inf. Syst. 27(1), 2:1–2:27 (2008). https://doi.org/10.1145/1416950.1416952
Smucker, M.D., Clarke, C.L.A.: Stochastic simulation of time-biased gain. In: Proceedings of the 21st ACM International Conference on Information and Knowledge Management, CIKM 2012, pp. 2040–2044. ACM, New York (2012). https://doi.org/10.1145/2396761.2398568
Smucker, M.D., Clarke, C.L.: Time-based calibration of effectiveness measures. In: Proceedings of the 35th International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2012, pp. 95–104. ACM, New York (2012). https://doi.org/10.1145/2348283.2348300
Tang, Z., Yang, G.H.: Investigating per topic upper bound for session search evaluation. In: Proceedings of the ACM SIGIR International Conference on Theory of Information Retrieval, ICTIR 2017, pp. 185–192. ACM, New York (2017). https://doi.org/10.1145/3121050.3121069
Yan, X., Gao, G., Su, X., Wei, H., Zhang, X., Lu, Q.: Hidden Markov model for term weighting in verbose queries. In: Catarci, T., Forner, P., Hiemstra, D., Peñas, A., Santucci, G. (eds.) CLEF 2012. LNCS, vol. 7488, pp. 82–87. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33247-0_10
Yang, H., Frank, J., Soboroff, I.: TREC 2015 dynamic domain track overview. In: The Twenty-Forth Text REtrieval Conference (TREC 2015) Proceedings, Gaithersburg, Maryland (2016)
Yang, G.H., Soboroff, I.: TREC 2016 dynamic domain track overview. In: Proceedings of The Twenty-Fifth Text REtrieval Conference, TREC 2016, Gaithersburg, 15–18 November 2016
Yang, Y., Lad, A.: Modeling expected utility of multi-session information distillation. In: Azzopardi, L., et al. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 164–175. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04417-5_15
Yilmaz, E., Aslam, J.A., Robertson, S.E.: A new rank correlation coefficient for information retrieval. In: Chua, T.S., Leong, M.K., Oard, D.W., Sebastiani, F. (eds.) Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2008), pp. 587–594. ACM Press, New York (2008)
Acknowledgements
This research was supported by the NWO Innovational Research Incentives Scheme Vidi (016.Vidi.189.039). All content represents the opinion of the authors, which is not necessarily shared or endorsed by their respective employers and/or sponsors.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
van Dijk, D., Ferrante, M., Ferro, N., Kanoulas, E. (2019). A Markovian Approach to Evaluate Session-Based IR Systems. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds) Advances in Information Retrieval. ECIR 2019. Lecture Notes in Computer Science(), vol 11437. Springer, Cham. https://doi.org/10.1007/978-3-030-15712-8_40
Download citation
DOI: https://doi.org/10.1007/978-3-030-15712-8_40
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-15711-1
Online ISBN: 978-3-030-15712-8
eBook Packages: Computer ScienceComputer Science (R0)