Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Mining Cluster Patterns in XML Corpora via Latent Topic Models of Content and Structure

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11441))

Included in the following conference series:

Abstract

We present two innovative machine-learning approaches to topic model clustering for the XML domain. The first approach consists in exploiting consolidated clustering techniques, in order to partition the input XML documents by their meaning. This is captured through a new Bayesian probabilistic topic model, whose novelty is the incorporation of Dirichlet-multinomial distributions for both content and structure. In the second approach, a novel Bayesian probabilistic generative model of XML corpora seamlessly integrates the foresaid topic model with clustering. Both are conceived as interacting latent factors, that govern the wording of the input XML documents. Experiments over real-world benchmark XML corpora reveal the overcoming effectiveness of the devised approaches in comparison to several state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistructured Data and XML. Morgan Kaufmann, Burlington (2000)

    Google Scholar 

  2. Aggarwal, C.C., Ta, N., Wang, J., Feng, J., Zaki, M.: XProj: a framework for projected structural clustering of XML documents. In: Proceedings of ACM KDD, pp. 46–55 (2007)

    Google Scholar 

  3. Andrieu, C., De Freitas, N., Doucet, A., Jordan, M.I.: An introduction to MCMC for machine learning. Mach. Learn. 50(1–2), 5–43 (2003)

    Article  MATH  Google Scholar 

  4. Bengio, Y., Ducharme, R., Vincent, P., Janvin, C.: A neural probabilistic language model. J. Mach. Learn. Res. 3, 1137–1155 (2003)

    MATH  Google Scholar 

  5. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  6. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  7. Bratko, A., Filipic̆, B.: Exploiting structural information for semi-structured document categorization. Inf. Process. Manag. 42(3), 679–694 (2006)

    Article  Google Scholar 

  8. Costa, G., Ortale, R.: Developments in partitioning XML documents by content and structure based on combining multiple clusterings. In: Proceedings of IEEE ICTAI, pp. 477–482 (2013)

    Google Scholar 

  9. Costa, G., Ortale, R.: A latent semantic approach to XML clustering by content and structure based on non-negative matrix factorization. In: Proceedings of IEEE ICMLA, pp. 179–184 (2013)

    Google Scholar 

  10. Costa, G., Ortale, R.: Mining clusters in XML corpora based on Bayesian generative topic modeling. In: Proceedings of IEEE ICMLA, pp. 515–520 (2015)

    Google Scholar 

  11. Costa, G., Ortale, R.: XML clustering by structure-constrained phrases: a fully-automatic approach using contextualized N-grams. Int. J. Artif. Intell. Tools 26(1), 1–24 (2017)

    Article  Google Scholar 

  12. Costa, G., Ortale, R.: Machine learning techniques for XML (co-)clustering by structure-constrained phrases. Inf. Retr. J. 21(1), 24–55 (2018)

    Article  Google Scholar 

  13. Denoyer, L., Gallinari, P.: Report on the XML mining track at INEX 2007. ACM SIGIR Forum 42(1), 22–28 (2008)

    Article  Google Scholar 

  14. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE Trans. Inf. Theory 49(7), 1858–1860 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hagenbuchner, M., Tsoi, A.C., Sperduti, A., Kc, M.: Efficient clustering of structured documents using graph self-organizing maps. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 207–221. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85902-4_19

    Chapter  Google Scholar 

  16. Han, J., Kamber, M., Pei, J.: Data Mining: Concepts and Techniques, 3rd edn. Morgan Kaufmann, Burlington (2011)

    MATH  Google Scholar 

  17. Heinrich, G.: Parameter estimation for text analysis. Technical report, University of Leipzig (2008). http://www.arbylon.net/publications/text-est.pdf

  18. Kutty, S., Nayak, R., Li, Y.: HCX: an efficient hybrid clustering approach for XML documents. In: Proceedings of ACM DocEng, pp. 94–97 (2009)

    Google Scholar 

  19. Kutty, S., Nayak, R., Li, Y.: XCFS: an XML documents clustering approach using both the structure and the content. In: Proceedings of ACM CIKM, pp. 1729–1732 (2009)

    Google Scholar 

  20. Li, S., Huang, G., Tan, R., Pan, R.: Tag-weighted dirichlet allocation. In: Proceedings of IEEE ICDM, pp. 438–447 (2013)

    Google Scholar 

  21. Li, S., Li, J., Pan, R.: Tag-weighted topic model for mining semi-structured documents. In: Proceedings of IJCAI, pp. 2855–2861 (2013)

    Google Scholar 

  22. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Proceedings of NIPS, pp. 3111–3119 (2013)

    Google Scholar 

  23. Mimno, D.M., McCallum, A.: Topic models conditioned on arbitrary features with dirichlet-multinomial regression. In: Proceedings of UAI, pp. 411–418 (2008)

    Google Scholar 

  24. Ramage, D., Manning, C.D., Dumais, S.: Partially labeled topic models for interpretable text mining. In: Proceedings of ACM KDD, pp. 457–465 (2011)

    Google Scholar 

  25. Tran, T., Nayak, R., Bruza, P.: Document clustering using incremental and pairwise approaches. In: Fuhr, N., Kamps, J., Lalmas, M., Trotman, A. (eds.) INEX 2007. LNCS, vol. 4862, pp. 222–233. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85902-4_20

    Chapter  Google Scholar 

  26. Xie, P., Xing, E.P.: Integrating document clustering and topic modeling. In: Proceedings of UAI (2013)

    Google Scholar 

  27. Yao, J., Zerida, N.: Rare patterns to improve path-based clustering of Wikipedia articles. In: Pre-proceedings of INEX, pp. 224–231 (2007)

    Google Scholar 

  28. Yi, J., Sundaresan, N.: A classifier for semi-structured documents. In: Proceedings of ACM KDD, pp. 340–344 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Ortale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Costa, G., Ortale, R. (2019). Mining Cluster Patterns in XML Corpora via Latent Topic Models of Content and Structure. In: Yang, Q., Zhou, ZH., Gong, Z., Zhang, ML., Huang, SJ. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2019. Lecture Notes in Computer Science(), vol 11441. Springer, Cham. https://doi.org/10.1007/978-3-030-16142-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16142-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16141-5

  • Online ISBN: 978-3-030-16142-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics