Abstract
We consider a strategic game called project game where each agent has to choose a project among his own list of available projects. The model includes positive weights expressing the capacity of a given agent to contribute to a given project. The realization of a project produces some reward that has to be allocated to the agents. The reward of a realized project is fully allocated to its contributors, according to a simple proportional rule. Existence and computational complexity of pure Nash equilibria is addressed and their efficiency is investigated according to both the utilitarian and the egalitarian social function.
Supported by ANR Project CoCoRICo-CoDec.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_38
Anshelevich, E., Dasgupta, A., Kleinberg, J.M., Tardos, É., Wexler, T., Roughgarden, T.: The price of stability for network design with fair cost allocation. In: Proceedings of the 45th Symposium on Foundations of Computer Science (FOCS), pp. 295–304 (2004)
Morris, S., Ui, T.: Best response equivalence. Games Econ. Behav. 49, 260–287 (2004)
Vetta, A.: Nash equilibria in competitive societies, with applications to facility location, traffic routing and auctions. In: Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS), pp. 416–425 (2002)
Augustine, J., Chen, N., Elkind, E., Fanelli, A., Gravin, N., Shiryaev, D.: Dynamics of profit-sharing games. Internet Math. 11, 1–22 (2015)
Bachrach, Y., Syrgkanis, V., Vojnović, M.: Incentives and efficiency in uncertain collaborative environments. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 26–39. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45046-4_4
Gollapudi, S., Kollias, K., Panigrahi, D., Pliatsika, V.: Profit sharing and efficiency in utility games. In: Proceedings of the 25th Annual European Symposium on Algorithms (ESA), pp. 43:1–43:14 (2017)
Goemans, M.X., Li, L., Mirrokni, V.S., Thottan, M.: Market sharing games applied to content distribution in ad hoc networks. IEEE J. Sel. Areas Commun. 24, 1020–1033 (2006)
Kleinberg, J.M., Oren, S.: Mechanisms for (mis)allocating scientific credit. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC), pp. 529–538 (2011)
Marden, J.R., Roughgarden, T.: Generalized efficiency bounds in distributed resource allocation. In: Proceedings of the 49th IEEE Conference on Decision and Control (CDC), pp. 2233–2238 (2010)
Marden, J.R., Wierman, A.: Distributed welfare games. Oper. Res. 61, 155–168 (2013)
Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Int. J. Game Theory 2, 65–67 (1973)
Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)
Ieong, S., McGrew, R., Nudelman, E., Shoham, Y., Sun, Q.: Fast and compact: a simple class of congestion games. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI), pp. 489–494 (2005)
Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ. Behav. 13, 111–124 (1996)
Vöcking, B.: Selfish load balancing. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 517–542. Cambridge University Press, New York (2007)
Drèze, J.H., Greenberg, J.: Hedonic coalitions: optimality and stability. Econometrica 48, 987–1003 (1980)
Darmann, A., Elkind, E., Kurz, S., Lang, J., Schauer, J., Woeginger, G.: Group activity selection problem. In: Goldberg, P.W. (ed.) WINE 2012. LNCS, vol. 7695, pp. 156–169. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35311-6_12
Fotakis, D., Kontogiannis, S., Koutsoupias, E., Mavronicolas, M., Spirakis, P.: The structure and complexity of Nash equilibria for a selfish routing game. In: Widmayer, P., Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP 2002. LNCS, vol. 2380, pp. 123–134. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45465-9_12
Gairing, M., Lucking, T., Mavronicolas, M., Monien, B.: Computing Nash equilibria for scheduling on restricted parallel links. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 613–622 (2004)
Fabrikant, A., Papadimitriou, C.H., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings of the 36th Annual ACM Symposium on Theory of Computing (STOC), pp. 604–612 (2004)
Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with player-specific linear latency functions. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 501–512. Springer, Heidelberg (2006). https://doi.org/10.1007/11786986_44
Georgiou, C., Pavlides, T., Philippou, A.: Selfish routing in the presence of network uncertainty. Parallel Process. Lett. 19, 141–157 (2009)
Biló, V.: A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion games. Theory Comput. Syst. 62, 1288–1317 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Bilò, V., Gourvès, L., Monnot, J. (2019). Project Games. In: Heggernes, P. (eds) Algorithms and Complexity. CIAC 2019. Lecture Notes in Computer Science(), vol 11485. Springer, Cham. https://doi.org/10.1007/978-3-030-17402-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-030-17402-6_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-17401-9
Online ISBN: 978-3-030-17402-6
eBook Packages: Computer ScienceComputer Science (R0)