Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integer Location Problems

  • Chapter
  • First Online:
Contributions to Location Analysis

Part of the book series: International Series in Operations Research & Management Science ((ISOR,volume 281))

  • 556 Accesses

Abstract

The goal of this paper is to introduce integer location problems. These are continuous location problems in which we look for a new facility with integer coordinates. We motivate why research on integer location problems is useful and sketch an application within robust optimization. We then analyze the structure of optimal integer locations: We identify integer location problems for which a finite dominating set can be constructed and we identify cases in which the integer problem can be solved by rounding the solution of the corresponding continuous location problem. We finally propose a geometric branch-and-bound procedure for solving integer location problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 15.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Berman, O., Drezner, Z., & Krass, D. (2011). Big segment small segment global optimization algorithm on networks. Networks, 58, 1–11.

    Article  Google Scholar 

  • Berman, O., & Kaplan, E. H. (1990). Equity maximizing facility location schemes. Transportation Science, 24, 137–144.

    Article  Google Scholar 

  • Blanquero, R., & Carrizosa, E. (2009). Continuous location problems and big triangle small triangle: Constructing better bounds. Journal of Global Optimization, 45(3), 389–402.

    Article  Google Scholar 

  • Brimberg, J., Hansen, P., Mladenović, N., & Salhi, S. (2008). A survey of solution methods for the continuous location allocation problem. International Journal of Operations Research, 5(1), 1–12.

    Google Scholar 

  • Brimberg, J., Juel, H., & Schöbel, A. (2009). Locating a minisum circle in the plane. Discrete Applied Mathematics, 157, 901–912.

    Article  Google Scholar 

  • Brimberg, J., & Love, R. F. (1993). Global convergence of a generalized iterative procedure for the minisum location problem with l p distances. Operations Research, 41, 1153–1163.

    Article  Google Scholar 

  • Carrizosa, E., Goerigk, M., & Schöbel, A. (2017). A biobjective approach to recovery robustness based on location planning. European Journal of Operational Research, 261, 421–435.

    Article  Google Scholar 

  • Díaz-Bánez, J. M., Mesa, J., & Schöbel, A. (2004). Continuous location of dimensional structures. European Journal of Operational Research, 152, 22–44.

    Article  Google Scholar 

  • Drezner, T. (2009). Competitive facility location. In Encyclopedia of optimization (2nd ed., pp. 396–401). Berlin: Springer.

    Google Scholar 

  • Drezner, T. (2014). A review of competitive facility location in the plane. Logistics Research, 7, 1–12.

    Article  Google Scholar 

  • Drezner, T., & Drezner, Z. (2007). Equity models in planar location. Computational Management Science, 4, 1–16.

    Article  Google Scholar 

  • Drezner, T., Drezner, Z., & Schöbel, A. (2018). The Weber obnoxious facility location model: A big arc small arc approach. Computers and Operations Research, 98, 240–250.

    Article  Google Scholar 

  • Drezner, T., & Eiselt, H. A. (2002). Consumers in competitive location models. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 151–178). Berlin: Springer.

    Chapter  Google Scholar 

  • Drezner, Z. (Ed.). (1995). Facility location: A survey of applications and methods. New York: Springer.

    Google Scholar 

  • Drezner, Z. (2007). A general global optimization approach for solving location problems in the plane. Journal of Global Optimization, 37(2), 305–319.

    Article  Google Scholar 

  • Drezner, Z. (2011). Continuous center problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 63–78). Berlin: Springer.

    Chapter  Google Scholar 

  • Drezner, Z., Klamroth, K., Schöbel, A., & Wesolowsky, G. (2002). The Weber problem. In Z. Drezner & H. Hamacher (Eds.), Facility location - applications and theory (chap. 1, pp. 1–36). Berlin: Springer.

    Google Scholar 

  • Drezner, Z., Steiner, S., & Wesolowsky, G. (1996). On the circle closest to a set of points. Technical report, California State University, Department of Management Science and Information Systems.

    Google Scholar 

  • Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of non-convex facility location problems. Operations Research, 52, 128–135.

    Article  Google Scholar 

  • Drezner, Z., & Wesolowsky, G. O. (1980). Single facility â„“ p distance minimax location. SIAM Journal of Algebraic and Discrete Methods, 1, 315–321.

    Article  Google Scholar 

  • Drezner, Z., & Wesolowsky, G. O. (1991). The Weber problem on the plane with some negative weights. INFOR, 29, 87–99.

    Google Scholar 

  • Durier, R., & Michelot, C. (1985). Geometrical properties of the Fermat-Weber problem. European Journal of Operational Research, 20, 332–343.

    Article  Google Scholar 

  • Eiselt, H. A. (2011). Equilibria in competitive location models. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 139–162). Berlin: Springer.

    Chapter  Google Scholar 

  • Eiselt, H. A., & Laporte, G. (1995). Objectives in location problems. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 151–180). New York: Springer.

    Chapter  Google Scholar 

  • Eiselt, H. A., & Marianov, V. (Eds.). (2011). Foundations of location analysis. New York: Springer.

    Google Scholar 

  • Eiselt, H. A., Marianov, V., & Drezner, T. (2015). Competitive location models. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (pp. 365–398). Berlin: Springer.

    Google Scholar 

  • Eisenbrand, F., & Rote, G. (2001). Fast 2-variable integer programming. In IPCO 2001: Integer programming and combinatorial optimization. Lecture notes in computer science (vol. 2081, pp. 78–89).

    Google Scholar 

  • Erera, A., Morales, J., & Savelsbergh, M. (2009). Robust optimization for empty repositioning problems. Operations Research, 57(2), 468–483.

    Article  Google Scholar 

  • Feit, S. (1984). A fast algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery, 31(1), 99–113.

    Article  Google Scholar 

  • García, S., & Marín, A. (2015). Covering location problems. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (pp. 93–114). Berlin: Springer.

    Google Scholar 

  • Goerigk, M., & Schöbel, A. (2011). A scenario-based approach for robust linear optimization. In Proceedings of the 1st International ICST Conference on Practice and Theory of Algorithms in (Computer) Systems (TAPAS). Lecture notes in computer science (pp. 139–150). Berlin: Springer.

    Google Scholar 

  • Goerigk, M., & Schöbel, A. (2014). Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Computers and Operations Research, 52, 1–15.

    Article  Google Scholar 

  • Hakimi, S. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.

    Article  Google Scholar 

  • Hakimi, S. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13(3), 462–475.

    Article  Google Scholar 

  • Hamacher, H. (1995). Mathematische Lösungsverfahren für planare Standortprobleme. Braunschweig: Vieweg.

    Book  Google Scholar 

  • Hamacher, H., & Drezner, Z. (Eds.). (2002). Facility location. Applications and theory. New York: Springer.

    Google Scholar 

  • Hamacher, H., & Nickel, S. (1995). Restricted planar location problems and applications. Naval Research Logistics, 42(6), 967–992.

    Article  Google Scholar 

  • Hamacher, H., & Schöbel, A. (1997). A note on center problems with forbidden polyhedra. Operations Research Letters, 20, 165–169.

    Article  Google Scholar 

  • Hansen, P., Peeters, D., & Thisse, J.-F. (1981). On the location of an obnoxious facility. Sistemi Urbani, 3, 299–317.

    Google Scholar 

  • Hübner, R., & Schöbel, A. (2014). When is rounding allowed in integer nonlinear optimization? European Journal of Operational Research, 237, 404–410.

    Article  Google Scholar 

  • Klamroth, K. (2002). Single-facility location problems with barriers. Springer series on operations research. New York: Springer.

    Google Scholar 

  • Klamroth, K., Mostaghim, S., Naujoks, B., Poles, S., Purshouse, R., Rudolph, G., et al. (2017). Multiobjective optimization for interwoven systems. Multi-Critieria Decision Analysis, 24, 71–81.

    Article  Google Scholar 

  • Laporte, G., Nickel, S., & da Gama, F. S. (Eds.). (2015). Location science. Switzerland: Springer.

    Google Scholar 

  • Liebchen, C., Lübbecke, M., Möhring, R. H., & Stiller, S. (2009). The concept of recoverable robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. Möhring, & C. Zaroliagis (Eds.), Robust and online large-scale optimization. Lecture note on computer science (vol. 5868). Berlin: Springer.

    Google Scholar 

  • Love, R., Morris, J., & Wesolowsky, G. (1988). Facilities location. Amsterdam: North-Holland.

    Google Scholar 

  • Martini, H., & Schöbel, A. (1998). Median hyperplanes in normed spaces — a survey. Discrete Applied Mathematics, 89, 181–195.

    Article  Google Scholar 

  • Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Pérez, J. (2007). The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927–939.

    Article  Google Scholar 

  • Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.

    Book  Google Scholar 

  • Nickel, S., & Puerto, J. (2005). Location theory: A unified approach. Berlin: Springer.

    Google Scholar 

  • Niebling, J., & Eichfelder, G. (2018). A branch-and-bound based algorithm for nonconvex multiobjective optimization. Technical report, Preprint-Series of the Institute for Mathematics, Technische Universität Ilmenau, Germany.

    Google Scholar 

  • Plastria, F. (1992). GBSSS, the generalized big square small square method for planar single facility location. European Journal of Operational Research, 62, 163–174.

    Article  Google Scholar 

  • ReVelle, C., & Eiselt, H. (2005). Location analysis: a synthesis and survey. European Journal of Operational Research, 165, 1–19.

    Article  Google Scholar 

  • Schöbel, A. (1998). Locating least distant lines in the plane. European Journal of Operational Research, 106(1), 152–159.

    Article  Google Scholar 

  • Schöbel, A. (1999). Locating lines and hyperplanes — Theory and algorithms. Applied optimization series (vol. 25). Dordecht: Kluwer.

    Book  Google Scholar 

  • Schöbel, A. (2015). Location of dimensional facilities in a continuous space. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (chap. 7, pp. 63–103). Berlin: Springer.

    Google Scholar 

  • Schöbel, A., & Scholz, D. (2010). The big cube small cube solution method for multidimensional facility location problems. Computers and Operations Research, 37, 115–122.

    Article  Google Scholar 

  • Schöbel, A., & Scholz, D. (2014). A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables. European Journal of Operational Research, 232(2), 266–275.

    Article  Google Scholar 

  • Scholz, D. (2010). The multicriteria big cube small cube method. TOP, 18, 286–302.

    Article  Google Scholar 

  • Scholz, D. (2011). General further discarding tests in geometric branch-and-bound methods for non-convex multicriteria optimization problems. Journal of Multi-Criteria Decision Analysis, 18, 65–75.

    Article  Google Scholar 

  • Scholz, D., & Schöbel, A. (2010). The theoretical and empirical rate of convergence for geometric branch-and-bound methods. Journal of Global Optimization, 48(3), 473–495.

    Article  Google Scholar 

  • Snyder, L. (2011). Covering problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 109–135). Berlin: Springer.

    Chapter  Google Scholar 

  • Thisse, J.-F., Ward, J. E., & Wendell, R. E. (1984). Some properties of location problems with block and round norms. Operations Research, 32(6), 1309–1327.

    Article  Google Scholar 

  • Ward, J., & Wendell, R. (1985). Using block norms for location modeling. Operations Research, 33, 1074–1090.

    Article  Google Scholar 

  • Wesolowsky, G. (1975). Location of the median line for weighted points. Environment and Planning A, 7, 163–170.

    Article  Google Scholar 

  • Wesolowsky, G. (1993). The Weber problem: history and perspectives. Location Science, 1(1):5–23.

    Google Scholar 

  • White, J. (1971). A quadratic facility location problem. American Institute of Industrial Engineers Transactions, 3, 156–157.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Schöbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schöbel, A. (2019). Integer Location Problems. In: Eiselt, H., Marianov, V. (eds) Contributions to Location Analysis. International Series in Operations Research & Management Science, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-19111-5_5

Download citation

Publish with us

Policies and ethics