Abstract
The goal of this paper is to introduce integer location problems. These are continuous location problems in which we look for a new facility with integer coordinates. We motivate why research on integer location problems is useful and sketch an application within robust optimization. We then analyze the structure of optimal integer locations: We identify integer location problems for which a finite dominating set can be constructed and we identify cases in which the integer problem can be solved by rounding the solution of the corresponding continuous location problem. We finally propose a geometric branch-and-bound procedure for solving integer location problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ben-Tal, A., Ghaoui, L. E., & Nemirovski, A. (2009). Robust optimization. Princeton: Princeton University Press.
Berman, O., Drezner, Z., & Krass, D. (2011). Big segment small segment global optimization algorithm on networks. Networks, 58, 1–11.
Berman, O., & Kaplan, E. H. (1990). Equity maximizing facility location schemes. Transportation Science, 24, 137–144.
Blanquero, R., & Carrizosa, E. (2009). Continuous location problems and big triangle small triangle: Constructing better bounds. Journal of Global Optimization, 45(3), 389–402.
Brimberg, J., Hansen, P., Mladenović, N., & Salhi, S. (2008). A survey of solution methods for the continuous location allocation problem. International Journal of Operations Research, 5(1), 1–12.
Brimberg, J., Juel, H., & Schöbel, A. (2009). Locating a minisum circle in the plane. Discrete Applied Mathematics, 157, 901–912.
Brimberg, J., & Love, R. F. (1993). Global convergence of a generalized iterative procedure for the minisum location problem with l p distances. Operations Research, 41, 1153–1163.
Carrizosa, E., Goerigk, M., & Schöbel, A. (2017). A biobjective approach to recovery robustness based on location planning. European Journal of Operational Research, 261, 421–435.
DÃaz-Bánez, J. M., Mesa, J., & Schöbel, A. (2004). Continuous location of dimensional structures. European Journal of Operational Research, 152, 22–44.
Drezner, T. (2009). Competitive facility location. In Encyclopedia of optimization (2nd ed., pp. 396–401). Berlin: Springer.
Drezner, T. (2014). A review of competitive facility location in the plane. Logistics Research, 7, 1–12.
Drezner, T., & Drezner, Z. (2007). Equity models in planar location. Computational Management Science, 4, 1–16.
Drezner, T., Drezner, Z., & Schöbel, A. (2018). The Weber obnoxious facility location model: A big arc small arc approach. Computers and Operations Research, 98, 240–250.
Drezner, T., & Eiselt, H. A. (2002). Consumers in competitive location models. In Z. Drezner & H. W. Hamacher (Eds.), Facility location: Applications and theory (pp. 151–178). Berlin: Springer.
Drezner, Z. (Ed.). (1995). Facility location: A survey of applications and methods. New York: Springer.
Drezner, Z. (2007). A general global optimization approach for solving location problems in the plane. Journal of Global Optimization, 37(2), 305–319.
Drezner, Z. (2011). Continuous center problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 63–78). Berlin: Springer.
Drezner, Z., Klamroth, K., Schöbel, A., & Wesolowsky, G. (2002). The Weber problem. In Z. Drezner & H. Hamacher (Eds.), Facility location - applications and theory (chap. 1, pp. 1–36). Berlin: Springer.
Drezner, Z., Steiner, S., & Wesolowsky, G. (1996). On the circle closest to a set of points. Technical report, California State University, Department of Management Science and Information Systems.
Drezner, Z., & Suzuki, A. (2004). The big triangle small triangle method for the solution of non-convex facility location problems. Operations Research, 52, 128–135.
Drezner, Z., & Wesolowsky, G. O. (1980). Single facility ℓ p distance minimax location. SIAM Journal of Algebraic and Discrete Methods, 1, 315–321.
Drezner, Z., & Wesolowsky, G. O. (1991). The Weber problem on the plane with some negative weights. INFOR, 29, 87–99.
Durier, R., & Michelot, C. (1985). Geometrical properties of the Fermat-Weber problem. European Journal of Operational Research, 20, 332–343.
Eiselt, H. A. (2011). Equilibria in competitive location models. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 139–162). Berlin: Springer.
Eiselt, H. A., & Laporte, G. (1995). Objectives in location problems. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 151–180). New York: Springer.
Eiselt, H. A., & Marianov, V. (Eds.). (2011). Foundations of location analysis. New York: Springer.
Eiselt, H. A., Marianov, V., & Drezner, T. (2015). Competitive location models. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (pp. 365–398). Berlin: Springer.
Eisenbrand, F., & Rote, G. (2001). Fast 2-variable integer programming. In IPCO 2001: Integer programming and combinatorial optimization. Lecture notes in computer science (vol. 2081, pp. 78–89).
Erera, A., Morales, J., & Savelsbergh, M. (2009). Robust optimization for empty repositioning problems. Operations Research, 57(2), 468–483.
Feit, S. (1984). A fast algorithm for the two-variable integer programming problem. Journal of the Association for Computing Machinery, 31(1), 99–113.
GarcÃa, S., & MarÃn, A. (2015). Covering location problems. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (pp. 93–114). Berlin: Springer.
Goerigk, M., & Schöbel, A. (2011). A scenario-based approach for robust linear optimization. In Proceedings of the 1st International ICST Conference on Practice and Theory of Algorithms in (Computer) Systems (TAPAS). Lecture notes in computer science (pp. 139–150). Berlin: Springer.
Goerigk, M., & Schöbel, A. (2014). Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling. Computers and Operations Research, 52, 1–15.
Hakimi, S. (1964). Optimum locations of switching centers and the absolute centers and medians of a graph. Operations Research, 12(3), 450–459.
Hakimi, S. (1965). Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Operations Research, 13(3), 462–475.
Hamacher, H. (1995). Mathematische Lösungsverfahren für planare Standortprobleme. Braunschweig: Vieweg.
Hamacher, H., & Drezner, Z. (Eds.). (2002). Facility location. Applications and theory. New York: Springer.
Hamacher, H., & Nickel, S. (1995). Restricted planar location problems and applications. Naval Research Logistics, 42(6), 967–992.
Hamacher, H., & Schöbel, A. (1997). A note on center problems with forbidden polyhedra. Operations Research Letters, 20, 165–169.
Hansen, P., Peeters, D., & Thisse, J.-F. (1981). On the location of an obnoxious facility. Sistemi Urbani, 3, 299–317.
Hübner, R., & Schöbel, A. (2014). When is rounding allowed in integer nonlinear optimization? European Journal of Operational Research, 237, 404–410.
Klamroth, K. (2002). Single-facility location problems with barriers. Springer series on operations research. New York: Springer.
Klamroth, K., Mostaghim, S., Naujoks, B., Poles, S., Purshouse, R., Rudolph, G., et al. (2017). Multiobjective optimization for interwoven systems. Multi-Critieria Decision Analysis, 24, 71–81.
Laporte, G., Nickel, S., & da Gama, F. S. (Eds.). (2015). Location science. Switzerland: Springer.
Liebchen, C., Lübbecke, M., Möhring, R. H., & Stiller, S. (2009). The concept of recoverable robustness, linear programming recovery, and railway applications. In R. K. Ahuja, R. Möhring, & C. Zaroliagis (Eds.), Robust and online large-scale optimization. Lecture note on computer science (vol. 5868). Berlin: Springer.
Love, R., Morris, J., & Wesolowsky, G. (1988). Facilities location. Amsterdam: North-Holland.
Martini, H., & Schöbel, A. (1998). Median hyperplanes in normed spaces — a survey. Discrete Applied Mathematics, 89, 181–195.
Mladenović, N., Brimberg, J., Hansen, P., & Moreno-Pérez, J. (2007). The p-median problem: A survey of metaheuristic approaches. European Journal of Operational Research, 179(3), 927–939.
Nemhauser, G. L., & Wolsey, L. A. (1988). Integer and combinatorial optimization. New York: Wiley.
Nickel, S., & Puerto, J. (2005). Location theory: A unified approach. Berlin: Springer.
Niebling, J., & Eichfelder, G. (2018). A branch-and-bound based algorithm for nonconvex multiobjective optimization. Technical report, Preprint-Series of the Institute for Mathematics, Technische Universität Ilmenau, Germany.
Plastria, F. (1992). GBSSS, the generalized big square small square method for planar single facility location. European Journal of Operational Research, 62, 163–174.
ReVelle, C., & Eiselt, H. (2005). Location analysis: a synthesis and survey. European Journal of Operational Research, 165, 1–19.
Schöbel, A. (1998). Locating least distant lines in the plane. European Journal of Operational Research, 106(1), 152–159.
Schöbel, A. (1999). Locating lines and hyperplanes — Theory and algorithms. Applied optimization series (vol. 25). Dordecht: Kluwer.
Schöbel, A. (2015). Location of dimensional facilities in a continuous space. In G. Laporte, S. Nickel, & F. S. da Gama (Eds.), Location science (chap. 7, pp. 63–103). Berlin: Springer.
Schöbel, A., & Scholz, D. (2010). The big cube small cube solution method for multidimensional facility location problems. Computers and Operations Research, 37, 115–122.
Schöbel, A., & Scholz, D. (2014). A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables. European Journal of Operational Research, 232(2), 266–275.
Scholz, D. (2010). The multicriteria big cube small cube method. TOP, 18, 286–302.
Scholz, D. (2011). General further discarding tests in geometric branch-and-bound methods for non-convex multicriteria optimization problems. Journal of Multi-Criteria Decision Analysis, 18, 65–75.
Scholz, D., & Schöbel, A. (2010). The theoretical and empirical rate of convergence for geometric branch-and-bound methods. Journal of Global Optimization, 48(3), 473–495.
Snyder, L. (2011). Covering problems. In H. A. Eiselt & V. Marianov (Eds.), Foundations of location analysis (pp. 109–135). Berlin: Springer.
Thisse, J.-F., Ward, J. E., & Wendell, R. E. (1984). Some properties of location problems with block and round norms. Operations Research, 32(6), 1309–1327.
Ward, J., & Wendell, R. (1985). Using block norms for location modeling. Operations Research, 33, 1074–1090.
Wesolowsky, G. (1975). Location of the median line for weighted points. Environment and Planning A, 7, 163–170.
Wesolowsky, G. (1993). The Weber problem: history and perspectives. Location Science, 1(1):5–23.
White, J. (1971). A quadratic facility location problem. American Institute of Industrial Engineers Transactions, 3, 156–157.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Schöbel, A. (2019). Integer Location Problems. In: Eiselt, H., Marianov, V. (eds) Contributions to Location Analysis. International Series in Operations Research & Management Science, vol 281. Springer, Cham. https://doi.org/10.1007/978-3-030-19111-5_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-19111-5_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19110-8
Online ISBN: 978-3-030-19111-5
eBook Packages: Economics and FinanceEconomics and Finance (R0)