Abstract
Starting with the seminal work on strong equivalence by Lifschitz, Pearce, and Valverde, many different advanced notions of program equivalence have been studied in the area of answer-set programming (ASP). In particular, relativised strong equivalence with projection has been introduced as a generalisation of strong equivalence by parameterising, on the one hand, the alphabet of the context programs used for checking program equivalence as well as, on the other hand, allowing the filtering of auxiliary atoms. Like many other advanced equivalence notions, it was introduced originally for propositional programs, along with model-theoretic concepts providing characterisations when equivalence between two programs hold. In this paper, we extend these concepts and characterisations to the general case of non-ground programs.
This work was partially supported by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology, and Development.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Woltran called his structures A-SE-interpretations and A-SE-models, respectively, and denoted the set of A-SE-models of a program by \( SE ^A(P)\).
References
Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1_10
Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24599-5_16
Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set programming: Characterizations and complexity results for the non-ground case. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 695–700. AAAI Press (2005)
Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 97–102. Professional Book (2005)
Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intel. 175(1), 236–263 (2011)
Geibinger, T.: Characterising relativised strong equivalence with projection for non-ground logic programs. Bachelor’s thesis, Technische Universität Wien, Institute of Logic and Computation, E193–03 (2018)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1070–1080. MIT Press (1988)
Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)
Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, pp. 65–66 (1932)
Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, pp. 42–56 (1930)
Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intel. Res. 35, 813–857 (2009)
Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Logic 2, 526–541 (2001)
Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics: the non-ground case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 591–605. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_49
Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored: relativised uniform equivalence with answer-set projection. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), pp. 458–464. AAAI Press (2007)
Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_46
Pührer, J., Tompits, H.: Casting away disjunction and negation under a generalisation of strong equivalence with projection. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 264–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_23
Turner, H.: Strong equivalence made easy: Nested expressions and weight constraints. Theory Pract. Logic Prog. 3, 602–622 (2003)
Woltran, S.: Characterizations for relativized notions of equivalence in answer set programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_16
Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory Pract. Logic Prog. 8, 217–234 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Geibinger, T., Tompits, H. (2019). Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-19570-0_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-19569-4
Online ISBN: 978-3-030-19570-0
eBook Packages: Computer ScienceComputer Science (R0)