Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs

  • Conference paper
  • First Online:
Logics in Artificial Intelligence (JELIA 2019)

Abstract

Starting with the seminal work on strong equivalence by Lifschitz, Pearce, and Valverde, many different advanced notions of program equivalence have been studied in the area of answer-set programming (ASP). In particular, relativised strong equivalence with projection has been introduced as a generalisation of strong equivalence by parameterising, on the one hand, the alphabet of the context programs used for checking program equivalence as well as, on the other hand, allowing the filtering of auxiliary atoms. Like many other advanced equivalence notions, it was introduced originally for propositional programs, along with model-theoretic concepts providing characterisations when equivalence between two programs hold. In this paper, we extend these concepts and characterisations to the general case of non-ground programs.

This work was partially supported by the Austrian Federal Ministry for Digital and Economic Affairs and the National Foundation for Research, Technology, and Development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Woltran called his structures A-SE-interpretations and A-SE-models, respectively, and denoted the set of A-SE-models of a program by \( SE ^A(P)\).

References

  1. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Simplifying logic programs under uniform and strong equivalence. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 87–99. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24609-1_10

    Chapter  MATH  Google Scholar 

  2. Eiter, T., Fink, M.: Uniform equivalence of logic programs under the stable model semantics. In: Palamidessi, C. (ed.) ICLP 2003. LNCS, vol. 2916, pp. 224–238. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24599-5_16

    Chapter  MATH  Google Scholar 

  3. Eiter, T., Fink, M., Tompits, H., Woltran, S.: Strong and uniform equivalence in answer-set programming: Characterizations and complexity results for the non-ground case. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 695–700. AAAI Press (2005)

    Google Scholar 

  4. Eiter, T., Tompits, H., Woltran, S.: On solution correspondences in answer set programming. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 97–102. Professional Book (2005)

    Google Scholar 

  5. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artif. Intel. 175(1), 236–263 (2011)

    Article  MathSciNet  Google Scholar 

  6. Geibinger, T.: Characterising relativised strong equivalence with projection for non-ground logic programs. Bachelor’s thesis, Technische Universität Wien, Institute of Logic and Computation, E193–03 (2018)

    Google Scholar 

  7. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the 5th International Conference and Symposium on Logic Programming (ICLP/SLP 1988), pp. 1070–1080. MIT Press (1988)

    Google Scholar 

  8. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases. New Gener. Comput. 9, 365–385 (1991)

    Article  Google Scholar 

  9. Gödel, K.: Zum intuitionistischen Aussagenkalkül. Anzeiger der Akademie der Wissenschaften in Wien, pp. 65–66 (1932)

    Google Scholar 

  10. Heyting, A.: Die formalen Regeln der intuitionistischen Logik. Sitzungsberichte der Preußischen Akademie der Wissenschaften. Physikalisch-mathematische Klasse, pp. 42–56 (1930)

    Google Scholar 

  11. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive stable models. J. Artif. Intel. Res. 35, 813–857 (2009)

    Article  MathSciNet  Google Scholar 

  12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans. Comput. Logic 2, 526–541 (2001)

    Article  MathSciNet  Google Scholar 

  13. Oetsch, J., Tompits, H.: Program correspondence under the answer-set semantics: the non-ground case. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 591–605. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_49

    Chapter  Google Scholar 

  14. Oetsch, J., Tompits, H., Woltran, S.: Facts do not cease to exist because they are ignored: relativised uniform equivalence with answer-set projection. In: Proceedings of the 22nd National Conference on Artificial Intelligence (AAAI 2007), pp. 458–464. AAAI Press (2007)

    Google Scholar 

  15. Pearce, D., Valverde, A.: Quantified equilibrium logic and foundations for answer set programs. In: Garcia de la Banda, M., Pontelli, E. (eds.) ICLP 2008. LNCS, vol. 5366, pp. 546–560. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89982-2_46

    Chapter  MATH  Google Scholar 

  16. Pührer, J., Tompits, H.: Casting away disjunction and negation under a generalisation of strong equivalence with projection. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009. LNCS (LNAI), vol. 5753, pp. 264–276. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04238-6_23

    Chapter  MATH  Google Scholar 

  17. Turner, H.: Strong equivalence made easy: Nested expressions and weight constraints. Theory Pract. Logic Prog. 3, 602–622 (2003)

    MathSciNet  MATH  Google Scholar 

  18. Woltran, S.: Characterizations for relativized notions of equivalence in answer set programming. In: Alferes, J.J., Leite, J. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 161–173. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30227-8_16

    Chapter  MATH  Google Scholar 

  19. Woltran, S.: A common view on strong, uniform, and other notions of equivalence in answer-set programming. Theory Pract. Logic Prog. 8, 217–234 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Geibinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Geibinger, T., Tompits, H. (2019). Characterising Relativised Strong Equivalence with Projection for Non-ground Answer-Set Programs. In: Calimeri, F., Leone, N., Manna, M. (eds) Logics in Artificial Intelligence. JELIA 2019. Lecture Notes in Computer Science(), vol 11468. Springer, Cham. https://doi.org/10.1007/978-3-030-19570-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19570-0_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19569-4

  • Online ISBN: 978-3-030-19570-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics