Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Learning-Based Optimization of the Under-Sampling Pattern in MRI

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11492))

Included in the following conference series:

Abstract

Acquisition of Magnetic Resonance Imaging (MRI) scans can be accelerated by under-sampling in k-space (i.e., the Fourier domain). In this paper, we consider the problem of optimizing the sub-sampling pattern in a data-driven fashion. Since the reconstruction model’s performance depends on the sub-sampling pattern, we combine the two problems. For a given sparsity constraint, our method optimizes the sub-sampling pattern and reconstruction model, using an end-to-end learning strategy. Our algorithm learns from full-resolution data that are under-sampled retrospectively, yielding a sub-sampling pattern and reconstruction model that are customized to the type of images represented in the training data. The proposed method, which we call LOUPE (Learning-based Optimization of the Under-sampling PattErn), was implemented by modifying a U-Net, a widely-used convolutional neural network architecture, that we append with the forward model that encodes the under-sampling process. Our experiments with T1-weighted structural brain MRI scans show that the optimized sub-sampling pattern can yield significantly more accurate reconstructions compared to standard random uniform, variable density or equispaced under-sampling schemes. The code is made available at: https://github.com/cagladbahadir/LOUPE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://bispl.weebly.com/aloha-for-mr-recon.html.

  2. 2.

    http://www.math.ucla.edu/~wotaoyin/papers/tgv_shearlet.html.

  3. 3.

    http://web.itu.edu.tr/eksioglue/pubs/BM3D_MRI.htm.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  3. Di Martino, A., et al.: The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19(6), 659 (2014)

    Article  Google Scholar 

  4. Eksioglu, E.M.: Decoupled algorithm for MRI reconstruction using nonlocal block matching model: BM3D-MRI. J. Math. Imaging Vis. 56(3), 430–440 (2016)

    Article  MathSciNet  Google Scholar 

  5. Gamper, U., Boesiger, P., Kozerke, S.: Compressed sensing in dynamic MRI. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 59(2), 365–373 (2008)

    Article  Google Scholar 

  6. Guo, W., Qin, J., Yin, W.: A new detail-preserving regularization scheme. SIAM J. Imaging Sci. 7(2), 1309–1334 (2014)

    Article  MathSciNet  Google Scholar 

  7. Haldar, J.P., Hernando, D., Liang, Z.P.: Compressed-sensing MRI with random encoding. IEEE Trans. Med. Imaging 30(4), 893–903 (2011)

    Article  Google Scholar 

  8. Haldar, J.P., Kim, D.: OEDIPUS: an experiment design framework for sparsity-constrained MRI. arXiv preprint arXiv:1805.00524 (2018)

  9. Huang, Y., Paisley, J., Lin, Q., Ding, X., Fu, X., Zhang, X.P.: Bayesian nonparametric dictionary learning for compressed sensing MRI. IEEE Trans. Image Process. 23(12), 5007–5019 (2014)

    Article  MathSciNet  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  11. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  12. Lee, D., Jin, K.H., Kim, E.Y., Park, S.H., Ye, J.C.: Acceleration of MR parameter mapping using annihilating filter-based low rank hankel matrix (ALOHA). Magn. Reson. Med. 76(6), 1848–1864 (2016)

    Article  Google Scholar 

  13. Lee, D., Yoo, J., Ye, J.C.: Deep residual learning for compressed sensing MRI. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 15–18. IEEE (2017)

    Google Scholar 

  14. Liu, D.D., Liang, D., Liu, X., Zhang, Y.T.: Under-sampling trajectory design for compressed sensing MRI. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 73–76. IEEE (2012)

    Google Scholar 

  15. Lustig, M., Donoho, D.L., Santos, J.M., Pauly, J.M.: Compressed sensing MRI. IEEE Signal Process. Mag. 25(2), 72–82 (2008)

    Article  Google Scholar 

  16. Ma, S., Yin, W., Zhang, Y., Chakraborty, A.: An efficient algorithm for compressed MR imaging using total variation and wavelets. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  17. Mardani, M., et al.: Deep generative adversarial networks for compressed sensing automates MRI. arXiv preprint arXiv:1706.00051 (2017)

  18. Qu, X., Hou, Y., Lam, F., Guo, D., Zhong, J., Chen, Z.: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. Med. Image Anal. 18(6), 843–856 (2014)

    Article  Google Scholar 

  19. Quan, T.M., Nguyen-Duc, T., Jeong, W.K.: Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss. IEEE Trans. Med. Imaging 37(6), 1488–1497 (2018)

    Article  Google Scholar 

  20. Ravishankar, S., Bresler, Y.: MR image reconstruction from highly undersampled k-space data by dictionary learning. IEEE Trans. Med. Imaging 30(5), 1028 (2011)

    Article  Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Seeger, M., Nickisch, H., Pohmann, R., Schölkopf, B.: Optimization of k-space trajectories for compressed sensing by Bayesian experimental design. Magn. Reson. Med.: Official J. Int. Soc. Magn. Reson. Med. 63(1), 116–126 (2010)

    Google Scholar 

  23. Sun, J., Li, H., Xu, Z., et al.: Deep ADMM-Net for compressive sensing MRI. In: Advances in Neural Information Processing Systems, pp. 10–18 (2016)

    Google Scholar 

  24. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where sense meets grappa. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  25. Wang, Z., Arce, G.R.: Variable density compressed image sampling. IEEE Trans. Image Process. 19(1), 264–270 (2010)

    Article  MathSciNet  Google Scholar 

  26. Yang, G., et al.: DAGAN: deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction. IEEE Trans. Med. Imaging 37(6), 1310–1321 (2018)

    Article  MathSciNet  Google Scholar 

  27. Gozcu, B., et al.: Learning-based compressive MRI. IEEE Trans. Medical Imaging 37(6), 1394–1406 (2018)

    Article  Google Scholar 

  28. Baldassarre, L., Li, Y.H., Scarlett, J., Gozcu, B., Bogunovic, I., Cevher, V.: Learning-based compressive subsampling. IEEE J. Sel. Top. Sign. Process. 10(4), 809–822 (2016)

    Article  Google Scholar 

  29. Mahabadi, R.K., Lin, J., Cevher, V.: A learning-based framework for quantized compressed sensing. IEEE Signal Process. Lett. 26(6), 883–887 (2019)

    Article  Google Scholar 

  30. Mahabadi, R.K., Aprile, C., Cevher, V.: Real-time DCT learning-based reconstruction of neural signals. In: 2018 26th European Signal Processing Conference (EUSIPCO), pp. 1925–1929. IEEE (2018)

    Google Scholar 

  31. Dalca, A.V., Guttag, J., Sabuncu, M.R.: Anatomical priors in convolutional networks for unsupervised biomedical segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition CVPR (2018)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH R01 grants (R01LM012719 and R01AG053949), the NSF NeuroNex grant 1707312, and NSF CAREER grant (1748377). This work was also supported by the Fulbright Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cagla Deniz Bahadir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bahadir, C.D., Dalca, A.V., Sabuncu, M.R. (2019). Learning-Based Optimization of the Under-Sampling Pattern in MRI. In: Chung, A., Gee, J., Yushkevich, P., Bao, S. (eds) Information Processing in Medical Imaging. IPMI 2019. Lecture Notes in Computer Science(), vol 11492. Springer, Cham. https://doi.org/10.1007/978-3-030-20351-1_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20351-1_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20350-4

  • Online ISBN: 978-3-030-20351-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics