Abstract
In this work we discuss the fuzzy optimization problem, in order to provide a mathematical approach to the foundation of optimization problem in the fuzzy context. By the Zadeh’s extension principle we revisit the decision method stated by Bellman and Zadeh.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barros, L.C., Bassanezi, R.C., Lodwick, W.A.: A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and Biomathematics. Springer, Berlin, Heidelberg (2017)
Barros, L.C., Bassanezi, R.C., Tonelli, P.A.: On the continuity of the Zadeh’s extension. In: Proceedings of the IFSA 1997 Congress, pp. 1–6 (1997)
Bellman, R.E., Zadeh, L.A.: Decision-making in a fuzzy environment. Manag. Sci. 17(4), B141–B164 (1970)
Bector, C.R., Chandra, S.: Fuzzy Mathematical Programming and Fuzzy Matrix Games. Studies in Fuzziness and Soft Computing, vol. 169. Springer, Berlin, Heidelberg (2005)
Chalco-Cano, Y., Silva, G.N., Rufián-Lizana, A.: On the Newton method for solving fuzzy optimization problems. Fuzzy Sets Syst. 272, 60–69 (2015)
Figueroa-García, J. C.: Linear programming with interval type-2 fuzzy right hand side parameters. In: NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society, pp. 1–6 (2008)
Figueroa-García, J.C., Hernandez, G.: Computing optimal solutions of a linear programming problem with interval type-2 fuzzy constraints. In: Hybrid Artificial Intelligent Systems, pp. 567–576 (2012)
Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice-Hall, New York (1995)
Mjelde, K.M.: Fuzzy resource allocation. Fuzzy Sets Syst. 19(3), 239–250 (1986)
Mohamed, R.H.: The relationship between goal programming and fuzzy programming. Fuzzy Sets Syst. 89, 215–222 (1997)
Nguyen, H.T.: A note on the extension principle for fuzzy sets. J. Math. Anal. Appl. 64, 369–380 (1978)
Östermark, R.: Fuzzy linear constraints in the capital asset pricing model. Fuzzy Sets Syst. 30(2), 93–102 (1989)
Osuna-Gómez, R., Chalco-Cano, Y., Rufián-Lizana, A., Hernández-Jiménez, B.: Necessary and sufficient conditions for fuzzy optimality problems. Fuzzy Sets Syst. 296, 112–123 (2016)
Osuna-Gómez, R., Hernández-Jiménez, B., Chalco-Cano, Y., Ruiz-Garzón, G.: Different optimum notions for fuzzy functions and optimality conditions associated. Fuzzy Optim. Decis. Making 17, 177–193 (2018)
Owsiński, J.W., Zadrozny, S., Kacprzyk, J.: Analysis of water use and needs in agriculture through a fuzzy programming model. In: Kacprzyk, J., Orlovski, S.A. (eds.) Optimization Models Using Fuzzy Sets and Possibility Theory, pp. 377–395. Springer, Dordrecht (1987)
Pathak, V.D., Pirzada, U.M.: Necessary and sufficient optimality conditions for nonlinear fuzzy optimization problem. Int. J. Math. Sci. Educ. 4(1), 1–16 (2011)
Pedrycz, W., Gomide, F.: An Introduction to Fuzzy Sets. The MIT Press, London (1998)
Rommelfanger, H.: Fuzzy linear programming and applications. Eur. J. Oper. Res. 92, 512–527 (1996)
Sommer, G., Pollatschek, M.A.: A fuzzy programming approach to an air pollution regulation problem. Prog. Cybern. Syst. Res. 3, 303–313 (1978)
Tang, J., Wang, D., Fung, R.Y.K., Yung, K.-L.: Understanding of fuzzy optimization: theories and methods. J. Syst. Sci. Complexity 17(1), 117–136 (2004)
Trappey, J.F.C., Richard Liu, C., Chang, T.C.: Theory and application in manufacturing, fuzzy non-linear programming (1988)
Verdegay, J.L.: Fuzzy mathematical programming. In: Gupta, M.M., Sanchez, E. (eds.) Fuzzy Information and Decision Processes, North Holland, Amsterdam (1982)
Verdegay, J.L.: Applications of fuzzy optimization in operational research. Control Cybern. 13(3), 229–239 (1984)
Werners, B.: Interactive multiple objective programming subject to flexible constraints. Eur. J. Oper. Res. 31, 342–349 (1987)
Wu, H.C.: Duality theory in fuzzy linear programming problems with fuzzy coefficients. Fuzzy Optim. Decis. Making 2, 61–73 (2003)
Wu, H.C.: Saddle point optimality conditions in fuzzy optimization. Fuzzy Optim. Decis. Making 2, 261–273 (2003)
Wu, H.C.: The optimality conditions for optimization problems with fuzzy-valued objective functions. Optimization 57(3), 476–489 (2008)
Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning-I, II, III. Inf. Sci. 8, 301–357 (1975)
Zimmermann, H.-J.: Applications of fuzzy set theory to mathematical programming. Inf. Sci. 36, 29–58 (1985)
Zimmermann, H.-J.: Description and optimization of fuzzy systems. Int. J. Gen. Syst. 2, 209–215 (1976)
Zimmermann, H.-J.: Fuzzy programming and linear programming with several objective functions. Fuzzy Sets Syst. 1, 45–55 (1978)
Acknowledgement
The authors would like to thank the financial support of CNPq under grant 306546/2017-5, CAPES under grant no. 1691227, and, FAPESP under grant no. 2016/26040-7.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Barros, L.C., Pinto, N.J.B., Esmi, E. (2019). On Fuzzy Optimization Foundation. In: Kearfott, R., Batyrshin, I., Reformat, M., Ceberio, M., Kreinovich, V. (eds) Fuzzy Techniques: Theory and Applications. IFSA/NAFIPS 2019 2019. Advances in Intelligent Systems and Computing, vol 1000. Springer, Cham. https://doi.org/10.1007/978-3-030-21920-8_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-21920-8_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-21919-2
Online ISBN: 978-3-030-21920-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)