Abstract
In this paper, we study the minimum power partial cover problem (MinPowerPartCov). Suppose X is a set of points and \(\mathcal S\) is a set of sensors on the plane, each sensor can adjust its power, the covering range of a sensor s with power p(s) is a disk centered at s which has radius r(s) satisfying \(p(s)=c\cdot r(s)^\alpha \). Given an integer \(k\le |X|\), the MinPowerPartCov problem is to determine the power assignment on each sensor such that at least k points are covered and the total power consumption is the minimum. We present an approximation algorithm with approximation ratio \(3^{\alpha }\), using a local ratio method, which coincides with the best known ratio for the minimum power (full) cover problem. Compared with the paper [9] which studies the MinPowerPartCov problem for \(\alpha =2\), our ratio improves their ratio from \(12+\varepsilon \) to 9.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Discret. Math. 25, 27–46 (1985)
Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)
Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disk. Comput. Geom. 46(3), 394–399 (2013)
Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 145–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_14
Bhowmick, S., Varadarajan, K., Xue, S.-K.: A constant-factor approximation for multi-covering with disks. Comput. Geom. 6(1), 220–24 (2015)
Bhowmick, S., Inamdar, T., Varadarajan, K.: On metric multi-covering problems. Computational Geometry, arxiv:1602.04152 (2017)
Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)
Chan, T.M., Granty, E., Konemanny, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585 (2012)
Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. CiteSeer (2011). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484
Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)
Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 243–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_21
Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)
Inamdar, T., Varadarajan, K.: On partial covering for geometric set system. Comput. Geom. 47, 1–14 (2018)
Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)
Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44, 883–895 (2010)
Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks. SIAM J. Comput. 44(6), 1650–1669 (2015)
Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33, 791–802 (2017)
Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34(1), 1–12 (2017)
Ran, Y., Shi, Y., Zhang, Z.: Primal dual algorithm for partial set multi-cover. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 372–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4_25
Roy, A.B., Govindarajan, S., Raman, R., Ray, S.: Packing and covering with non-piercing regions. Discret. Comput. Geom. 60, 471–492 (2018)
SlavÃk, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)
Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In: STOC 2010, pp. 641–648 (2010)
Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04565-7
Acknowledgment
This research is supported in part by NSFC (11771013, 61751303, 11531011) and the Zhejiang Provincial Natural Science Foundation of China (LD19A010001, LY19A010018).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, M., Ran, Y., Zhang, Z. (2019). Approximation Algorithms for the Minimum Power Partial Cover Problem. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-27195-4_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-27194-7
Online ISBN: 978-3-030-27195-4
eBook Packages: Computer ScienceComputer Science (R0)