Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Approximation Algorithms for the Minimum Power Partial Cover Problem

  • Conference paper
  • First Online:
Algorithmic Aspects in Information and Management (AAIM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11640))

Included in the following conference series:

  • 651 Accesses

Abstract

In this paper, we study the minimum power partial cover problem (MinPowerPartCov). Suppose X is a set of points and \(\mathcal S\) is a set of sensors on the plane, each sensor can adjust its power, the covering range of a sensor s with power p(s) is a disk centered at s which has radius r(s) satisfying \(p(s)=c\cdot r(s)^\alpha \). Given an integer \(k\le |X|\), the MinPowerPartCov problem is to determine the power assignment on each sensor such that at least k points are covered and the total power consumption is the minimum. We present an approximation algorithm with approximation ratio \(3^{\alpha }\), using a local ratio method, which coincides with the best known ratio for the minimum power (full) cover problem. Compared with the paper [9] which studies the MinPowerPartCov problem for \(\alpha =2\), our ratio improves their ratio from \(12+\varepsilon \) to 9.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bar-Yehuda, R., Even, S.: A local-ratio theorem for approximating the weighted vertex cover problem. Ann. Discret. Math. 25, 27–46 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Bar-Yehuda, R.: Using homogeneous weights for approximating the partial cover problem. J. Algorithms 39(2), 137–144 (2001)

    Article  MathSciNet  Google Scholar 

  3. Bar-Yehuda, R., Rawitz, D.: A note on multicovering with disk. Comput. Geom. 46(3), 394–399 (2013)

    Article  MathSciNet  Google Scholar 

  4. Bansal, N., Pruhs, K.: Weighted geometric set multi-cover via quasi-uniform sampling. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 145–156. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2_14

    Chapter  Google Scholar 

  5. Bhowmick, S., Varadarajan, K., Xue, S.-K.: A constant-factor approximation for multi-covering with disks. Comput. Geom. 6(1), 220–24 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Bhowmick, S., Inamdar, T., Varadarajan, K.: On metric multi-covering problems. Computational Geometry, arxiv:1602.04152 (2017)

  7. Chvatal, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233–235 (1979)

    Article  MathSciNet  Google Scholar 

  8. Chan, T.M., Granty, E., Konemanny, J., Sharpe, M.: Weighted capacitated, priority, and geometric set cover via improved quasi-uniform sampling. In: SODA, pp. 1576–1585 (2012)

    Google Scholar 

  9. Freund, A., Rawitz, D.: Combinatorial interpretations of dual fitting and primal fitting. CiteSeer (2011). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.585.9484

  10. Gandhi, R., Khuller, S., Srinivasan, A.: Approximation algorithms for partial covering problems. J. Algorithms 53(1), 55–84 (2004)

    Article  MathSciNet  Google Scholar 

  11. Gibson, M., Pirwani, I.A.: Algorithms for dominating set in disk graphs: breaking the logn barrier. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp. 243–254. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-2_21

    Chapter  MATH  Google Scholar 

  12. Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing problems in image processing and VLSI. J. ACM 32, 130–136 (1985)

    Article  MathSciNet  Google Scholar 

  13. Inamdar, T., Varadarajan, K.: On partial covering for geometric set system. Comput. Geom. 47, 1–14 (2018)

    Google Scholar 

  14. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput. Syst. Sci. 9, 256–278 (1974)

    Article  MathSciNet  Google Scholar 

  15. Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discret. Comput. Geom. 44, 883–895 (2010)

    Article  MathSciNet  Google Scholar 

  16. Mustafa, N.H., Raman, R., Ray, S.: Quasi-polynomial time approximation scheme for weighted geometric set cover on pseudodisks. SIAM J. Comput. 44(6), 1650–1669 (2015)

    Article  MathSciNet  Google Scholar 

  17. Ran, Y., Zhang, Z., Du, H., Zhu, Y.: Approximation algorithm for partial positive influence problem in social network. J. Comb. Optim. 33, 791–802 (2017)

    Article  MathSciNet  Google Scholar 

  18. Ran, Y., Shi, Y., Zhang, Z.: Local ratio method on partial set multi-cover. J. Comb. Optim. 34(1), 1–12 (2017)

    Article  MathSciNet  Google Scholar 

  19. Ran, Y., Shi, Y., Zhang, Z.: Primal dual algorithm for partial set multi-cover. In: Kim, D., Uma, R.N., Zelikovsky, A. (eds.) COCOA 2018. LNCS, vol. 11346, pp. 372–385. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04651-4_25

    Chapter  Google Scholar 

  20. Roy, A.B., Govindarajan, S., Raman, R., Ray, S.: Packing and covering with non-piercing regions. Discret. Comput. Geom. 60, 471–492 (2018)

    Article  MathSciNet  Google Scholar 

  21. Slavík, P.: Improved performance of the greedy algorithm for partial cover. Inf. Process. Lett. 64(5), 251–254 (1997)

    Article  MathSciNet  Google Scholar 

  22. Varadarajan, K.: Weighted geometric set cover via quasi-uniform sampling. In: STOC 2010, pp. 641–648 (2010)

    Google Scholar 

  23. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04565-7

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This research is supported in part by NSFC (11771013, 61751303, 11531011) and the Zhejiang Provincial Natural Science Foundation of China (LD19A010001, LY19A010018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, M., Ran, Y., Zhang, Z. (2019). Approximation Algorithms for the Minimum Power Partial Cover Problem. In: Du, DZ., Li, L., Sun, X., Zhang, J. (eds) Algorithmic Aspects in Information and Management. AAIM 2019. Lecture Notes in Computer Science(), vol 11640. Springer, Cham. https://doi.org/10.1007/978-3-030-27195-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27195-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27194-7

  • Online ISBN: 978-3-030-27195-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics