Abstract
The traditional business model of energy companies is changing in recent years. The introduction of smart meters has led to an exponential increase in the volume of data available, and their analysis can help find consumption patterns among electric customers to reduce costs and protect the environment. Power plants generate electricity to cover peak consumption at specific times. A set of techniques called “demand response” tries to solve this problem using artificial intelligence proposals. This document proposes a method for processing large volumes of data such as those generated by smart meters. Both for the preprocessing and for the optimization and realization of this analysis big data techniques are used. Specifically, a distributed version of the k-means algorithm and several indices of internal validation of clustering for big data in Spark. The source data correspond to the consumption of electric customers in Bogota, Colombia during the year 2018. The analysis carried out in this study about consumers helps their characterization. This greater knowledge about consumer habits and types of customers can enhance the work of utilities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Sánchez, L., Vásquez, C., Viloria, A.: The data envelopment analysis to determine efficiency in Latina American countries for greenhouse gases control in electrical power generation. Int. J. Energy Econ. Policy 8(3), 197–208 (2018)
Sánchez, L., Vásquez, C., Viloria, A.: Conglomerates of Latina American countries and public policies for the sustainable development of electric power generation sector. In: International Conference on Data Mining and Big data, pp. 759–766 (2018)
Lom, M., Pribyl, O., Svitek, M.: Industry 4.0 as a part of smart cities. In: 2016 Smart Cities Symposium Prague (SCSP), pp. 1–6 (2016)
Góngora, G.P.M.: Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC. Ingeniare 19(19), 137–149 (2016)
Arnal, J.C.: ‘Smart cities’: Oportunidad económica y desafío urbano. Econ. Aragon. 48, 79–93 (2012)
Ontiveros, E., Vizcaíno, D., López Sabaer, V.: Las ciudades del futuro: inteligentes, digitales y sostenibles futuro: inteligentes, digitales y sostenibles (2016)
Andrés, C., Andrade, D., Hernández, J.C.: Smart Grid: Las TICs y la modernización de las redes de energía eléctrica – Estado del Arte. Sistemas Telemática 9, 53–81 (2011)
Papastamatiou, I., Marinakis, V., Doukas, H., Psarras, J.: A decision support framework for smart cities energy assessment and optimization. Energy Procedia 111, 800–809 (2017)
Lucena, M., Sánchez, L., Vásquez, C., Viloria, A.: Regulatory framework and environmental management of the compact fluorescent lamps. J. Eng. Appl. Sci. 12(13), 3495–3498 (2016)
Araujo, G.: Eficiencia técnica de los niveles de electrificación de países latinoamericanos. Revista Digital de Investigación y Postgrado (REDIP) 5(4), 977–993 (2015). Universidad Nacional Experimental Politécnica “Antonio José Sucre”, Venezuela
Feitosa, M., Carvalho, A., Mendes, M., Marques, M.: Receita tributária e qualidade dos serviços públicos no Brasil e nos países membros da OECD (2017). https://www.occ.pt/dtrab/trabalhos/xviicica/finais_site/117.pdf
Vázquez-Barquero, A., Surgimiento y transformación de clusters y milieus en los procesos de desarrollo. Revista Eure, XXXII(95), 75–92 (2006). Chile
Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manage. 3(7), 699–703 (2015)
Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009)
Bontempi, G., Ben Taieb, S., Borgne, Y.A.: Machine learning strategies for time series forecasting. In: M.-A., Zimányi, E. (eds.) Lecture Notes in Business Information Processing, Aufaure, vol. 138, no. 1, pp. 70–73. Springer, Heidelberg (2013)
Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009)
Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inform. J. 17(1), 147–159 (2015)
Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, 432–444 (1995)
Stolfo, S., Prodromidis, A. L., Tselepis, S., Lee, W., Fan, D. W.: Java agents for metalearning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997)
Organización Latinoamericana de Energía (OLADE), Balance Energético-Metodología OLADE (2016)
Varela Izquierdo, N., Cabrera H.R., Lopez Carvajal, G., Viloria, A., Gaitán Angulo, M., Henry, M.A.: Methodology for the reduction and integration of data in the performance measurement of industries cement plants. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data, DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Viloria, A. et al. (2020). Demand in the Electricity Market: Analysis Using Big Data. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-30465-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-30465-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-30464-5
Online ISBN: 978-3-030-30465-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)