Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Demand in the Electricity Market: Analysis Using Big Data

  • Conference paper
  • First Online:
Intelligent Computing, Information and Control Systems (ICICCS 2019)

Abstract

The traditional business model of energy companies is changing in recent years. The introduction of smart meters has led to an exponential increase in the volume of data available, and their analysis can help find consumption patterns among electric customers to reduce costs and protect the environment. Power plants generate electricity to cover peak consumption at specific times. A set of techniques called “demand response” tries to solve this problem using artificial intelligence proposals. This document proposes a method for processing large volumes of data such as those generated by smart meters. Both for the preprocessing and for the optimization and realization of this analysis big data techniques are used. Specifically, a distributed version of the k-means algorithm and several indices of internal validation of clustering for big data in Spark. The source data correspond to the consumption of electric customers in Bogota, Colombia during the year 2018. The analysis carried out in this study about consumers helps their characterization. This greater knowledge about consumer habits and types of customers can enhance the work of utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sánchez, L., Vásquez, C., Viloria, A.: The data envelopment analysis to determine efficiency in Latina American countries for greenhouse gases control in electrical power generation. Int. J. Energy Econ. Policy 8(3), 197–208 (2018)

    Google Scholar 

  2. Sánchez, L., Vásquez, C., Viloria, A.: Conglomerates of Latina American countries and public policies for the sustainable development of electric power generation sector. In: International Conference on Data Mining and Big data, pp. 759–766 (2018)

    Chapter  Google Scholar 

  3. Lom, M., Pribyl, O., Svitek, M.: Industry 4.0 as a part of smart cities. In: 2016 Smart Cities Symposium Prague (SCSP), pp. 1–6 (2016)

    Google Scholar 

  4. Góngora, G.P.M.: Revisión de literatura sobre ciudades inteligentes: una perspectiva centrada en las TIC. Ingeniare 19(19), 137–149 (2016)

    Google Scholar 

  5. Arnal, J.C.: ‘Smart cities’: Oportunidad económica y desafío urbano. Econ. Aragon. 48, 79–93 (2012)

    Google Scholar 

  6. Ontiveros, E., Vizcaíno, D., López Sabaer, V.: Las ciudades del futuro: inteligentes, digitales y sostenibles futuro: inteligentes, digitales y sostenibles (2016)

    Google Scholar 

  7. Andrés, C., Andrade, D., Hernández, J.C.: Smart Grid: Las TICs y la modernización de las redes de energía eléctrica – Estado del Arte. Sistemas Telemática 9, 53–81 (2011)

    Article  Google Scholar 

  8. Papastamatiou, I., Marinakis, V., Doukas, H., Psarras, J.: A decision support framework for smart cities energy assessment and optimization. Energy Procedia 111, 800–809 (2017)

    Article  Google Scholar 

  9. Lucena, M., Sánchez, L., Vásquez, C., Viloria, A.: Regulatory framework and environmental management of the compact fluorescent lamps. J. Eng. Appl. Sci. 12(13), 3495–3498 (2016)

    Google Scholar 

  10. Araujo, G.: Eficiencia técnica de los niveles de electrificación de países latinoamericanos. Revista Digital de Investigación y Postgrado (REDIP) 5(4), 977–993 (2015). Universidad Nacional Experimental Politécnica “Antonio José Sucre”, Venezuela

    Google Scholar 

  11. Feitosa, M., Carvalho, A., Mendes, M., Marques, M.: Receita tributária e qualidade dos serviços públicos no Brasil e nos países membros da OECD (2017). https://www.occ.pt/dtrab/trabalhos/xviicica/finais_site/117.pdf

  12. Vázquez-Barquero, A., Surgimiento y transformación de clusters y milieus en los procesos de desarrollo. Revista Eure, XXXII(95), 75–92 (2006). Chile

    Google Scholar 

  13. Mombeini, H., Yazdani-Chamzini, A.: Modelling gold price via artificial neural network. J. Econ. Bus. Manage. 3(7), 699–703 (2015)

    Article  Google Scholar 

  14. Kulkarni, S., Haidar, I.: Forecasting model for crude oil price using artificial neural networks and commodity future prices. Int. J. Comput. Sci. Inf. Secur. 2(1), 81–89 (2009)

    Google Scholar 

  15. Bontempi, G., Ben Taieb, S., Borgne, Y.A.: Machine learning strategies for time series forecasting. In: M.-A., Zimányi, E. (eds.) Lecture Notes in Business Information Processing, Aufaure, vol. 138, no. 1, pp. 70–73. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  16. Duan, L., Xu, L., Liu, Y., Lee, J.: Cluster-based outlier detection. Ann. Oper. Res. 168(1), 151–168 (2009)

    Article  MathSciNet  Google Scholar 

  17. Abhay, K.A., Badal, N.A.: Novel approach for intelligent distribution of data warehouses. Egypt. Inform. J. 17(1), 147–159 (2015)

    Google Scholar 

  18. Savasere, A., Omiecinski, E., Navathe, S.: An efficient algorithm for data mining association rules in large databases. In: Proceedings of 21st Very Large Data Base Conference, vol. 5, no. 1, 432–444 (1995)

    Google Scholar 

  19. Stolfo, S., Prodromidis, A. L., Tselepis, S., Lee, W., Fan, D. W.: Java agents for metalearning over distributed databases. In: Proceedings of 3rd International Conference on Knowledge Discovery and Data Mining, vol. 5, no. 2, pp. 74–81 (1997)

    Google Scholar 

  20. Organización Latinoamericana de Energía (OLADE), Balance Energético-Metodología OLADE (2016)

    Google Scholar 

  21. Varela Izquierdo, N., Cabrera H.R., Lopez Carvajal, G., Viloria, A., Gaitán Angulo, M., Henry, M.A.: Methodology for the reduction and integration of data in the performance measurement of industries cement plants. In: Tan, Y., Shi, Y., Tang, Q. (eds.) Data Mining and Big Data, DMBD 2018. Lecture Notes in Computer Science, vol. 10943. Springer, Cham (2018)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amelec Viloria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Viloria, A. et al. (2020). Demand in the Electricity Market: Analysis Using Big Data. In: Pandian, A., Ntalianis, K., Palanisamy, R. (eds) Intelligent Computing, Information and Control Systems. ICICCS 2019. Advances in Intelligent Systems and Computing, vol 1039. Springer, Cham. https://doi.org/10.1007/978-3-030-30465-2_36

Download citation

Publish with us

Policies and ethics