Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Ontology-Driven Processing of Unstructured Text

  • Conference paper
  • First Online:
Artificial Intelligence (RCAI 2019)

Abstract

A lot of projects on ontologies focus on describing some aspect of reality: objects, relations, states of affairs, events, and processes in the world. Another approach is using ontologies for problem-solving. In this paper we discuss an approach for designing NLP tasks based on a multilevel system of ontological models. We developed a system of ontological models which is used for ontology-driven computational processing of unstructured texts. The components of the system are the ontology of task designing, the ontology of applied models, and the domain ontology. We discuss the general schema of designing solutions of applied tasks and some applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  2. Natural Language Toolkit. http://www.nltk.org/. Accessed 04 Oct 2019

  3. Apache OpenNLP. http://opennlp.apache.org/. Accessed 04 Oct 2019

  4. Cunningham, H., Tablan, V., Roberts, A., Bontcheva, K.: Getting more out of biomedical documents with GATE’s full lifecycle open source text analytics. PLoS Comput. Biol. 9(2), e1002854 (2013)

    Article  Google Scholar 

  5. Ferrucci, D., et al.: Unstructured information management architecture (UIMA) version 1.0. OASIS Standard, March 2009

    Google Scholar 

  6. Khoroshevsky, V.F.: Ontology driven multilingual information extraction and intelligent analytics. In: Proceedings of NATO Advanced Research Workshop on Web Intelligence and Security, Ein-Bokek, Israel, 18–20 November 2009

    Google Scholar 

  7. Tamita parser. https://tech.yandex.ru/tomita/doc/tutorial/concept/about-docpage/. Accessed 04 Oct 2019

  8. Anisimovich, K.V., Druzhkin, K.J., Minlos, F.R., Petrova, M.A., Selegey, V.P., Zuev, K.A.: Syntactic and semantic parser based on ABBYY Compreno linguistic technologies. In: Computational Linguistics and Intellectual Technologies Papers from the Annual International Conference “Dialogue”, Issue 11, Volume 2 of 2. Papers from special sessions, pp. 91–103 (2012)

    Google Scholar 

  9. Nevzorova, O., Nevzorov, V.: Terminological annotation of the document in a retrieval context on the basis of technologies of system “OntoIntegrator”. Int. J. Inf. Technol. Knowl. 5(2), 110–118 (2011)

    Google Scholar 

  10. Russian National Corpus. http://ruscorpora.ru. Accessed 04 Oct 2019

  11. Happel, H., Seedorf, S.: Applications of ontologies in software engineering. In: Proceedings of the 2nd International Workshop on Semantic Web Enabled Software Engineering, (ESE 2006), pp. 1–14 (2006)

    Google Scholar 

  12. Chandrasekaran, B., Josephson, J.R., Richard Benjamins, V.: Ontology of tasks and methods. AAAI Technical report SS-97-06. http://web.cse.ohio-state.edu/~chandrasekaran.1/Ontology-of-Tasks-Methods.PDF. Accessed 04 Oct 2019

  13. Smith, S.F., Becker, M.A.: An ontology for constructing scheduling, systems. In: Proceedings of AAAI-1997, Spring Symposium on Ontological Engineering (1997)

    Google Scholar 

  14. Breuker, J., Van de Velde, W.: CommonKADS Library for Expert Modelling. IOS Press, Amsterdam (1994)

    MATH  Google Scholar 

  15. Lehmann, J., Shamiyeh, M., Ziemer, S.: Towards integration and coverage assessment of ontologies for knowledge reuse in the aviation sector. In: Joint Proceedings of SEMANTiCS 2017 Workshops Co-located with the 13th International Conference on Semantic Systems (SEMANTiCS 2017) Amsterdam, Netherlands (2017). CEUR Workshop Proceedings (CEUR-WS.org), vol. 2063. http://ceur-ws.org/Vol-2063/lidari-paper3.pdf. Accessed 04 Oct 2019

  16. Liu, S., Brewster, C., Shaw, D.: Ontologies for crisis management: a review of state of the art in ontology design and usability. In: Comes, T., Fiedrich, F., Fortier, S., Geldermann, J., Müller, T. (eds.) Proceedings of the 10th International ISCRAM Conference – Baden-Baden, Germany, May 2013, pp. 349–358 (2013)

    Google Scholar 

  17. Nevzorova, O., et al.: Bringing math to LOD: a semantic publishing platform prototype for scientific collections in mathematics. In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8218, pp. 379–394. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41335-3_24

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was funded by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities, grant agreement no. 1.2368.2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Nevzorova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nevzorova, O., Nevzorov, V. (2019). Ontology-Driven Processing of Unstructured Text. In: Kuznetsov, S., Panov, A. (eds) Artificial Intelligence. RCAI 2019. Communications in Computer and Information Science, vol 1093. Springer, Cham. https://doi.org/10.1007/978-3-030-30763-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30763-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30762-2

  • Online ISBN: 978-3-030-30763-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics