Abstract
Because they reduce the search domains for geodesic paths in manifolds, sub-Riemannian methods can be used both as computational and modeling tools in designing distances between complex objects. This chapter provides a review of the methods that have been recently introduced in this context to study shapes, with a special focus on shape spaces defined as homogeneous spaces under the action of diffeomorphisms. It describes sub-Riemannian methods that are based on control points, possibly enhanced with geometric information, and their generalization to deformation modules. It also discusses the introduction of implicit constraints on geodesic evolution, and the associated computational challenges. Several examples and numerical results are provided as illustrations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agrachev, A.A., Sachkov, Y.: Control Theory from the Geometric Viewpoint, vol. 87. Springer, New York (2013)
Arguillère, S.: Sub-Riemannian geometry and geodesics in Banach manifolds. J. Geom. Anal. 1–42 (2019)
Arguillère, S., Trélat, E.: Sub-riemannian structures on groups of diffeomorphisms. J. Inst. Math. Jussieu 16(4), 745–785 (2017)
Arguillère, S., Miller, M., Younes, L.: Lddmm surface registration with atrophy constraints. SIAM J. Imag. Sci. 9(3) (2015)
Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Shape deformation analysis from the optimal control viewpoint. Journal des Mathématiques Pures et Appliquées 104(1), 139–178 (2015)
Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Registration of multiple shapes using constrained optimal control. SIAM J. Imag. Sci. 9(1), 344–385 (2016)
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
Arrate, F., Ratnanather, J.T., Younes, L.: Diffeomorphic active contours. SIAM J. Imag. Sci. 3(2), 176–198 (2010)
Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vision 33(2), 222–238 (2009)
Bauer, M., Harms, P., Michor, P.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)
Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vision 50(1–2), 60–97 (2014)
Buhmann, M.: Radial basis functions: theory and implementations. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)
Charlier, B., Feydy, J., Glaunès, J.: Keops: calcul rapide sur GPU dans les espaces à noyaux. In: Proceedings of Journées de Statistique de la SFdS, Paris (2018)
Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imag. Sci. 6(4), 2547–2580 (2013)
Cheney, E.W., Light, W.A.: A Course in Approximation Theory, vol. 101. American Mathematical Society, Providence (2009)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis, vol. 4. Wiley, New York (1998)
Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis: With Applications in R. John Wiley & Sons, Hoboken (2016)
Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numerique 10, 5–12 (1977)
Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587 (1998)
Durrleman, S., Prastawa, M., Gerig, G., Joshi, S.: Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In: Székely, G.H.H. (ed.), IPMI 2011: Information Processing in Medical Imaging, pp. 123–134. Springer, Berlin (2011)
Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013)
Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)
Glaunès, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: CVPR 2004, vol. 2, pp. II-712–II-718. IEEE, Piscataway (2004)
Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)
Grenander, U.: Elements of Pattern Theory. Johns Hopkins Univ Press, Baltimore (1996)
Grenander, U., Miller, M.M.I.: Pattern Theory: From Representation to Knowledge. Oxford University Press, Oxford (2007)
Gris, B., Durrleman, S., Trouvé, A.: A sub-Riemannian modular framework for diffeomorphism-based analysis of shape ensembles. SIAM J. Imag. Sci. 11(1), 802–833 (2018)
Hsieh, D.-N., Arguillère, S., Charon, N., Miller, M.I., Younes, L.: A model for elastic evolution on foliated shapes. In: Proceedings of IPMI’19 (2019)
Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for Riemannian analysis of elastic curves in R 2. In: Computer Vision and Pattern Recognition, 2007, vol. 2007, pp. 1–7 (2007)
Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3346–3355 (2017)
Kendall, D.G.: Shape manifolds, Procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)
Kendall, D., Barden, D., Carne, T., Le, H.: Shape and Shape Theory, vol. 11. Wiley, Hoboken (1999)
Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using path-straightening. In: European Conference on Computer Vision 2006, pp. 95–106. Springer, Berlin (2006)
Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, pp. 164–176. Springer, Berlin (2017)
Kulason, S., Tward, D.J., Brown, T., Sicat, C.S., Liu, C.-F., Ratnanather, J.T., Younes, L., Bakker, A., Gallagher, M., Albert, M., Miller, M.I.: Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. NeuroImage Clin. 21, 101617 (2019)
Luenberger, D.G.: Optimization by Vector Space Methods. J. Wiley and Sons, Hoboken (1969)
Macki, J., Strauss, A.: Introduction to Optimal Control Theory. Springer, Berlin (2012)
Meinguet, J.: Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. 30, 292–304 (1979)
Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M., (eds.), Eurographics Symposium on Point-Based Graphics. The Eurographics Association, Aire-la-Ville (2007)
Memoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: CVPR Workshop on Nonrigid Shape Analysis (2008)
Micheli, M., Glaunès, J.A.: Matrix-valued kernels for shape deformation analysis. Geom. Imag. Comput. 1(1), 57–139 (2014)
Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 1, 1–48 (2006)
Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)
Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)
Ratnanather, J.T., Arguillère, S., Kutten, K.S., Hubka, P., Kral, A., Younes, L.: 3D normal coordinate systems for cortical areas. In: Kushnarev, S., Qiu, A., Younes, L. (eds.), Mathematics of Shapes and Applications, abs/1806.11169 (2019)
Roussillon, P., Glaunès, J.: Representation of surfaces with normal cycles. Application to surface registration. Technical Report, University Paris-Descartes (2019)
Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Seiler, C., Pennec, X., Reyes, M.: Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. 16(7), 1371–1384 (2012)
Sharon, E., Mumford, D.: 2D shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55–75 (2006)
Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, New York (2008)
Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. Springer, Berlin (2016)
Staneva, V., Younes, L.: Modeling and estimation of shape deformation for topology-preserving object tracking. SIAM J. Imag. Sci. 7(1), 427–455 (2014)
Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 2006(1071), 242–250 (2006)
Thompson, D.W.: On Growth and Form. Revised Edition. Cambridge University Press (1961), Cambridge (1917)
Trouvé, A.: Infinite Dimensional Group Action and Pattern Recognition. Technical Report, DMI, Ecole Normale Supérieure (1995)
Tward, D.J., Brown, T., Patel, J., Kageyama, Y., Mori, S., Troncoso, J.C., Miller, M.: Quantification of 3D tangle distribution in medial temporal lobe using multimodal image registration and convolutional neural networks. Alzheimers Dement. 14(7), P1291 (2018)
Vaillant, M., Glaunes, J.: Surface matching via currents. In: Information Processing in Medical Imaging 2005, pp. 381–392. Springer, New York (2005)
Vincent, T.L., Grantham, W.J.: Nonlinear and Optimal Control Systems. Wiley, Hoboken (1997)
Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)
Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)
Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)
Younes, L.: Constrained diffeomorphic shape evolution. In: Foundations of Computational Mathematics (2012)
Younes, L.: Gaussian diffeons for surface and image matching within a Lagrangian framework. Geom. Imaging and Comput. 1(1), 141–171 (2014)
Younes, L.: Shapes and Diffeomorphisms, 2nd edn. Springer, Berlin (2019)
Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape spaces with explicit geodesics. Rend. Lincei Mat. Appl. 9, 25–57 (2008)
Zeng, W., Gu, X.D.: Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2457–2464. IEEE, Piscataway (2011)
Zhang, W., Noble, J.A., Brady, J.M.: Adaptive non-rigid registration of real time 3D ultrasound to cardiovascular mr images. In: Information Processing in Medical Imaging, pp. 50–61. Springer, Berlin (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Younes, L., Gris, B., Trouvé, A. (2020). Sub-Riemannian Methods in Shape Analysis. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-030-31351-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31350-0
Online ISBN: 978-3-030-31351-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)