Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sub-Riemannian Methods in Shape Analysis

  • Chapter
  • First Online:
Handbook of Variational Methods for Nonlinear Geometric Data

Abstract

Because they reduce the search domains for geodesic paths in manifolds, sub-Riemannian methods can be used both as computational and modeling tools in designing distances between complex objects. This chapter provides a review of the methods that have been recently introduced in this context to study shapes, with a special focus on shape spaces defined as homogeneous spaces under the action of diffeomorphisms. It describes sub-Riemannian methods that are based on control points, possibly enhanced with geometric information, and their generalization to deformation modules. It also discusses the introduction of implicit constraints on geodesic evolution, and the associated computational challenges. Several examples and numerical results are provided as illustrations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrachev, A.A., Sachkov, Y.: Control Theory from the Geometric Viewpoint, vol. 87. Springer, New York (2013)

    MATH  Google Scholar 

  2. Arguillère, S.: Sub-Riemannian geometry and geodesics in Banach manifolds. J. Geom. Anal. 1–42 (2019)

    Google Scholar 

  3. Arguillère, S., Trélat, E.: Sub-riemannian structures on groups of diffeomorphisms. J. Inst. Math. Jussieu 16(4), 745–785 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arguillère, S., Miller, M., Younes, L.: Lddmm surface registration with atrophy constraints. SIAM J. Imag. Sci. 9(3) (2015)

    Google Scholar 

  5. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Shape deformation analysis from the optimal control viewpoint. Journal des Mathématiques Pures et Appliquées 104(1), 139–178 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arguillère, S., Trélat, E., Trouvé, A., Younes, L.: Registration of multiple shapes using constrained optimal control. SIAM J. Imag. Sci. 9(1), 344–385 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arrate, F., Ratnanather, J.T., Younes, L.: Diffeomorphic active contours. SIAM J. Imag. Sci. 3(2), 176–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vision 33(2), 222–238 (2009)

    Article  MathSciNet  Google Scholar 

  10. Bauer, M., Harms, P., Michor, P.: Sobolev metrics on shape space of surfaces. J. Geom. Mech. 3(4), 389–438 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bauer, M., Bruveris, M., Michor, P.W.: Overview of the geometries of shape spaces and diffeomorphism groups. J. Math. Imaging Vision 50(1–2), 60–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Buhmann, M.: Radial basis functions: theory and implementations. In: Cambridge Monographs on Applied and Computational Mathematics, vol. 12. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  13. Charlier, B., Feydy, J., Glaunès, J.: Keops: calcul rapide sur GPU dans les espaces à noyaux. In: Proceedings of Journées de Statistique de la SFdS, Paris (2018)

    Google Scholar 

  14. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imag. Sci. 6(4), 2547–2580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cheney, E.W., Light, W.A.: A Course in Approximation Theory, vol. 101. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  16. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis, vol. 4. Wiley, New York (1998)

    MATH  Google Scholar 

  17. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis: With Applications in R. John Wiley & Sons, Hoboken (2016)

    Book  MATH  Google Scholar 

  18. Duchon, J.: Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces. R.A.I.R.O. Analyse Numerique 10, 5–12 (1977)

    MathSciNet  Google Scholar 

  19. Dupuis, P., Grenander, U., Miller, M.: Variational problems on flows of diffeomorphisms for image matching. Q. Appl. Math. 56(3), 587 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  20. Durrleman, S., Prastawa, M., Gerig, G., Joshi, S.: Optimal data-driven sparse parameterization of diffeomorphisms for population analysis. In: Székely, G.H.H. (ed.), IPMI 2011: Information Processing in Medical Imaging, pp. 123–134. Springer, Berlin (2011)

    Google Scholar 

  21. Durrleman, S., Allassonnière, S., Joshi, S.: Sparse adaptive parameterization of variability in image ensembles. Int. J. Comput. Vis. 101(1), 161–183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Durrleman, S., Prastawa, M., Charon, N., Korenberg, J.R., Joshi, S., Gerig, G., Trouvé, A.: Morphometry of anatomical shape complexes with dense deformations and sparse parameters. NeuroImage 101, 35–49 (2014)

    Article  Google Scholar 

  23. Glaunès, J., Trouvé, A., Younes, L.: Diffeomorphic matching of distributions: a new approach for unlabelled point-sets and sub-manifolds matching. In: CVPR 2004, vol. 2, pp. II-712–II-718. IEEE, Piscataway (2004)

    Google Scholar 

  24. Glaunès, J., Qiu, A., Miller, M.I., Younes, L.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80(3), 317–336 (2008)

    Article  Google Scholar 

  25. Grenander, U.: Elements of Pattern Theory. Johns Hopkins Univ Press, Baltimore (1996)

    MATH  Google Scholar 

  26. Grenander, U., Miller, M.M.I.: Pattern Theory: From Representation to Knowledge. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  27. Gris, B., Durrleman, S., Trouvé, A.: A sub-Riemannian modular framework for diffeomorphism-based analysis of shape ensembles. SIAM J. Imag. Sci. 11(1), 802–833 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Hsieh, D.-N., Arguillère, S., Charon, N., Miller, M.I., Younes, L.: A model for elastic evolution on foliated shapes. In: Proceedings of IPMI’19 (2019)

    Google Scholar 

  29. Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.: A novel representation for Riemannian analysis of elastic curves in R 2. In: Computer Vision and Pattern Recognition, 2007, vol. 2007, pp. 1–7 (2007)

    Google Scholar 

  30. Kaltenmark, I., Charlier, B., Charon, N.: A general framework for curve and surface comparison and registration with oriented varifolds. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 3346–3355 (2017)

    Google Scholar 

  31. Kendall, D.G.: Shape manifolds, Procrustean metrics and complex projective spaces. Bull. London Math. Soc. 16, 81–121 (1984)

    Article  MATH  Google Scholar 

  32. Kendall, D., Barden, D., Carne, T., Le, H.: Shape and Shape Theory, vol. 11. Wiley, Hoboken (1999)

    Book  MATH  Google Scholar 

  33. Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using path-straightening. In: European Conference on Computer Vision 2006, pp. 95–106. Springer, Berlin (2006)

    Google Scholar 

  34. Kühnel, L., Sommer, S.: Computational anatomy in Theano. In: Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics, pp. 164–176. Springer, Berlin (2017)

    Google Scholar 

  35. Kulason, S., Tward, D.J., Brown, T., Sicat, C.S., Liu, C.-F., Ratnanather, J.T., Younes, L., Bakker, A., Gallagher, M., Albert, M., Miller, M.I.: Cortical thickness atrophy in the transentorhinal cortex in mild cognitive impairment. NeuroImage Clin. 21, 101617 (2019)

    Article  Google Scholar 

  36. Luenberger, D.G.: Optimization by Vector Space Methods. J. Wiley and Sons, Hoboken (1969)

    Google Scholar 

  37. Macki, J., Strauss, A.: Introduction to Optimal Control Theory. Springer, Berlin (2012)

    MATH  Google Scholar 

  38. Meinguet, J.: Multivariate interpolation at arbitrary points made simple. J. Appl. Math. Phys. 30, 292–304 (1979)

    MathSciNet  MATH  Google Scholar 

  39. Memoli, F.: On the use of Gromov-Hausdorff distances for shape comparison. In: Botsch, M., Pajarola, R., Chen, B., Zwicker, M., (eds.), Eurographics Symposium on Point-Based Graphics. The Eurographics Association, Aire-la-Ville (2007)

    Google Scholar 

  40. Memoli, F.: Gromov-Hausdorff distances in Euclidean spaces. In: CVPR Workshop on Nonrigid Shape Analysis (2008)

    Google Scholar 

  41. Micheli, M., Glaunès, J.A.: Matrix-valued kernels for shape deformation analysis. Geom. Imag. Comput. 1(1), 57–139 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Michor, P., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 1, 1–48 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  43. Michor, P., Mumford, D.: An overview of the Riemannian metrics on spaces of curves using the Hamiltonian approach. Appl. Comput. Harmon. Anal. 23(1), 74–113 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  45. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  46. Ratnanather, J.T., Arguillère, S., Kutten, K.S., Hubka, P., Kral, A., Younes, L.: 3D normal coordinate systems for cortical areas. In: Kushnarev, S., Qiu, A., Younes, L. (eds.), Mathematics of Shapes and Applications, abs/1806.11169 (2019)

    Google Scholar 

  47. Roussillon, P., Glaunès, J.: Representation of surfaces with normal cycles. Application to surface registration. Technical Report, University Paris-Descartes (2019)

    MATH  Google Scholar 

  48. Schölkopf, B., Smola, A.J., Bach, F., et al.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)

    Google Scholar 

  49. Seiler, C., Pennec, X., Reyes, M.: Capturing the multiscale anatomical shape variability with polyaffine transformation trees. Med. Image Anal. 16(7), 1371–1384 (2012)

    Article  Google Scholar 

  50. Sharon, E., Mumford, D.: 2D shape analysis using conformal mapping. Int. J. Comput. Vis. 70(1), 55–75 (2006)

    Article  Google Scholar 

  51. Siddiqi, K., Pizer, S.: Medial Representations: Mathematics, Algorithms and Applications, vol. 37. Springer, New York (2008)

    Book  MATH  Google Scholar 

  52. Srivastava, A., Klassen, E.P.: Functional and Shape Data Analysis. Springer, Berlin (2016)

    Book  MATH  Google Scholar 

  53. Staneva, V., Younes, L.: Modeling and estimation of shape deformation for topology-preserving object tracking. SIAM J. Imag. Sci. 7(1), 427–455 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  54. Styner, M., Oguz, I., Xu, S., Brechbühler, C., Pantazis, D., Levitt, J.J., Shenton, M.E., Gerig, G.: Framework for the statistical shape analysis of brain structures using SPHARM-PDM. Insight J. 2006(1071), 242–250 (2006)

    Google Scholar 

  55. Thompson, D.W.: On Growth and Form. Revised Edition. Cambridge University Press (1961), Cambridge (1917)

    Google Scholar 

  56. Trouvé, A.: Infinite Dimensional Group Action and Pattern Recognition. Technical Report, DMI, Ecole Normale Supérieure (1995)

    Google Scholar 

  57. Tward, D.J., Brown, T., Patel, J., Kageyama, Y., Mori, S., Troncoso, J.C., Miller, M.: Quantification of 3D tangle distribution in medial temporal lobe using multimodal image registration and convolutional neural networks. Alzheimers Dement. 14(7), P1291 (2018)

    Article  Google Scholar 

  58. Vaillant, M., Glaunes, J.: Surface matching via currents. In: Information Processing in Medical Imaging 2005, pp. 381–392. Springer, New York (2005)

    Google Scholar 

  59. Vincent, T.L., Grantham, W.J.: Nonlinear and Optimal Control Systems. Wiley, Hoboken (1997)

    Google Scholar 

  60. Wahba, G.: Spline Models for Observational Data. SIAM, Philadelphia (1990)

    Book  MATH  Google Scholar 

  61. Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3D shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)

    Article  Google Scholar 

  62. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58(2), 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  63. Younes, L.: Constrained diffeomorphic shape evolution. In: Foundations of Computational Mathematics (2012)

    Google Scholar 

  64. Younes, L.: Gaussian diffeons for surface and image matching within a Lagrangian framework. Geom. Imaging and Comput. 1(1), 141–171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  65. Younes, L.: Shapes and Diffeomorphisms, 2nd edn. Springer, Berlin (2019)

    Book  MATH  Google Scholar 

  66. Younes, L., Michor, P., Shah, J., Mumford, D.: A metric on shape spaces with explicit geodesics. Rend. Lincei Mat. Appl. 9, 25–57 (2008)

    MathSciNet  MATH  Google Scholar 

  67. Zeng, W., Gu, X.D.: Registration for 3D surfaces with large deformations using quasi-conformal curvature flow. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2457–2464. IEEE, Piscataway (2011)

    Google Scholar 

  68. Zhang, W., Noble, J.A., Brady, J.M.: Adaptive non-rigid registration of real time 3D ultrasound to cardiovascular mr images. In: Information Processing in Medical Imaging, pp. 50–61. Springer, Berlin (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Younes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Younes, L., Gris, B., Trouvé, A. (2020). Sub-Riemannian Methods in Shape Analysis. In: Grohs, P., Holler, M., Weinmann, A. (eds) Handbook of Variational Methods for Nonlinear Geometric Data. Springer, Cham. https://doi.org/10.1007/978-3-030-31351-7_17

Download citation

Publish with us

Policies and ethics