Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Towards Pragmatic Understanding of Conversational Intent: A Multimodal Annotation Approach to Multiparty Informal Interaction – The EVA Corpus

  • Conference paper
  • First Online:
Statistical Language and Speech Processing (SLSP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11816))

Included in the following conference series:

  • 1070 Accesses

Abstract

The present paper describes a corpus for research into the pragmatic nature of how information is expressed synchronously through language, speech, and gestures. The outlined research stems from the ‘growth point theory’ and ‘integrated systems hypothesis’, which proposes that co-speech gestures (including hand gestures, facial expressions, posture, and gazing) and speech originate from the same representation, but are not necessarily based solely on the speech production process; i.e. ‘speech affects what people produce in gesture and that gesture, in turn, affects what people produce in speech’ ([1]: 260). However, the majority of related multimodal corpuses ‘ground’ non-verbal behavior in linguistic concepts such as speech acts or dialog acts. In this work, we propose an integrated annotation scheme that enables us to study linguistic and paralinguistic interaction features independently and to interlink them over a shared timeline. To analyze multimodality in interaction, a high-quality multimodal corpus based on informal discourse in a multiparty setting was built.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is impossible to provide exact English equivalents for the Slovenian discourse markers examined in this paper as there are no one-to-one equivalents. The translations provided here are therefore only informative, giving the general meaning of each discourse marker.

References

  1. Kelly, S.D., Özyürek, A., Maris, E.: Two sides of the same coin: speech and gesture mutually interact to enhance comprehension. Psychol. Sci. 21(2), 260–267 (2010)

    Article  Google Scholar 

  2. Couper-Kuhlen, E.: Finding a place for body movement in grammar. Res. Lang. Soc. Interact. 51(1), 22–25 (2018)

    Article  Google Scholar 

  3. Cassell, J.: Embodied conversational agents: representation and intelligence in user interfaces. AI Mag. 22(4), 67 (2001)

    Google Scholar 

  4. Davitti, E., Pasquandrea, S.: Embodied participation: what multimodal analysis can tell us about interpreter-mediated encounters in pedagogical settings. J. Pragmat. 107, 105–128 (2017)

    Article  Google Scholar 

  5. Trujillo, J.P., Simanova, I., Bekkering, H., Özyürek, A.: Communicative intent modulates production and comprehension of actions and gestures: a Kinect study. Cognition 180, 38–51 (2018)

    Article  Google Scholar 

  6. McNeill, D.: Why We Gesture: The Surprising Role of Hand Movements in Communication. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  7. Church, R.B., Goldin-Meadow, S.: So how does gesture function in speaking, communication, and thinking? Why Gesture?: How the hands function in speaking, thinking and communicating, vol. 7,p. 397 (2017)

    Google Scholar 

  8. Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)

    Article  Google Scholar 

  9. Esposito, A., Vassallo, J., Esposito, A.M., Bourbakis, N.: On the amount of semantic information conveyed by gestures. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 660–667. IEEE (2015)

    Google Scholar 

  10. Lin, Y.L.: Co-occurrence of speech and gestures: a multimodal corpus linguistic approach to intercultural interaction. J. Pragmat. 117, 155–167 (2017)

    Article  Google Scholar 

  11. Keevallik, L.: What does embodied interaction tell us about grammar? Res. Lang. Soc. Interact. 51(1), 1–21 (2018)

    Article  Google Scholar 

  12. Vilhjálmsson, H.H.: Representing communicative function and behavior in multimodal communication. In: Esposito, A., Hussain, A., Marinaro, M., Martone, R. (eds.) Multimodal Signals: Cognitive and Algorithmic Issues. LNCS (LNAI), vol. 5398, pp. 47–59. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00525-1_4

    Chapter  Google Scholar 

  13. Arnold, L.: Dialogic embodied action: using gesture to organize sequence and participation in instructional interaction. Res. Lang. Soc. Interact. 45(3), 269–296 (2012)

    Article  Google Scholar 

  14. Kendon, A.: Semiotic diversity in utterance production and the concept of ‘language’. Phil. Trans. R. Soc. B 369, 20130293 (2014). https://doi.org/10.1098/rstb.2013.0293

    Article  Google Scholar 

  15. McNeill, D.: Gesture in linguistics (2015)

    Chapter  Google Scholar 

  16. Allwood, J.: A framework for studying human multimodal communication. In: Rojc, M., Campbell, N. (eds.) Coverbal Synchrony in Human-Machine Interaction. CRC Press, Boca Raton (2013)

    Google Scholar 

  17. Navarro-Cerdan, J.R., Llobet, R., Arlandis, J., Perez-Cortes, J.C.: Composition of constraint, hypothesis and error models to improve interaction in human-machine interfaces. Inf. Fusion 29, 1–13 (2016)

    Article  Google Scholar 

  18. Nevile, M.: The embodied turn in research on language and social interaction. Res. Lang. Soc. Interact. 48(2), 121–151 (2015)

    Article  Google Scholar 

  19. Hoek, J., Zufferey, S., Evers-Vermeul, J., Sanders, T.J.: Cognitive complexity and the linguistic marking of coherence relations: a parallel corpus study. J. Pragmat. 121, 113–131 (2017)

    Article  Google Scholar 

  20. Birdwhistell, R.L.: Introduction to Kinesics: An Annotation System for Analysis of Body Motion and Gesture. Department of State, Foreign Service Institute, Washington, DC (1952)

    Google Scholar 

  21. Adolphs, S., Carter, R.: Spoken Corpus Linguistics: From Monomodal to Multimodal, vol. 15. Routledge, London (2013)

    Book  Google Scholar 

  22. Navarretta, C.: The automatic annotation of the semiotic type of hand gestures in Obama’s humorous speeches. In: Proceedings of the Eleventh International Conference on Language Resources and Evaluation (LREC 2018), pp. 1067–1072 (2018)

    Google Scholar 

  23. Han, T., Hough, J., Schlangen, D.: Natural language informs the interpretation of iconic gestures: a computational approach. In Proceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Vol. 2, pp. 134–139 (2017)

    Google Scholar 

  24. Brône, G., Oben, B.: Insight interaction: a multimodal and multifocal dialogue corpus. Lang. Resour. Eval. 49(1), 195–214 (2015)

    Article  Google Scholar 

  25. Paggio, P., Navarretta, C.: The Danish NOMCO corpus: multimodal interaction in first acquaintance conversations. Lang. Resour. Eval. 51(2), 463–494 (2017)

    Article  Google Scholar 

  26. Lis, M., Navarretta, C.: Classifying the form of iconic hand gestures from the linguistic categorization of co-occurring verbs. In: Proceedings from the 1st European Symposium on Multimodal Communication University of Malta; Valletta, 17–18 October 2013, no. 101, pp. 41-50. Linköping University Electronic Press (2014)

    Google Scholar 

  27. Feyaerts, K., Brône, G., Oben, B.: Multimodality in interaction. In: Dancygier, B. (ed.) The Cambridge Handbook of Cognitive Linguistics, pp. 135–156. Cambridge University Press, Cambridge (2017)

    Chapter  Google Scholar 

  28. Chen, L., et al.: VACE multimodal meeting corpus. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 40–51. Springer, Heidelberg (2006). https://doi.org/10.1007/11677482_4

    Chapter  Google Scholar 

  29. Knight, D.: Multimodality and Active Listenership: A Corpus Approach: Corpus and Discourse. Bloomsbury, London (2011)

    Google Scholar 

  30. Bonsignori, V., Camiciottoli, B.C. (eds.): Multimodality Across Communicative Settings, Discourse Domains and Genres. Cambridge Scholars Publishing, Cambridge (2017)

    Google Scholar 

  31. Rojc, M., Mlakar, I., Kačič, Z.: The TTS-driven affective embodied conversational agent EVA, based on a novel conversational-behavior generation algorithm. Eng. Appl. Artif. Intell. 57, 80–104 (2017)

    Article  Google Scholar 

  32. Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)

    Article  Google Scholar 

  33. Mezza, S., Cervone, A., Tortoreto, G., Stepanov, E.A., Riccardi, G.: ISO-standard domain-independent dialogue act tagging for conversational agents (2018)

    Google Scholar 

  34. Verdonik, D.: Vpliv komunikacijskih žanrov na rabo diskurznih označevalcev. In: Vintar, Š. (ed.) Slovenske korpusne raziskave, (Zbirka Prevodoslovje in uporabno jezikoslovje). 1, 88–108. Znanstvena založba Filozofske fakultete, Ljubljana (2010)

    Google Scholar 

  35. Plutchik, R.: The nature of emotion. Am. Sci. 89, 344–350 (2001)

    Article  Google Scholar 

  36. Kipp, M., Neff, M., Albrecht, I.: An annotation scheme for conversational gestures: how to economically capture timing and form. Lang. Resour. Eval. 41(3–4), 325–339 (2007)

    Article  Google Scholar 

  37. Mlakar, I., Rojc, M.: Capturing form of non-verbal conversational behavior for recreation on synthetic conversational agent EVA. WSEAS Trans. Comput. 11(7), 218–226 (2012)

    Google Scholar 

Download references

Acknowledgments

This work is partially funded by the European Regional Development Fund and the Ministry of Education, Science and Sport of the Republic of Slovenia; the project SAIAL (research core funding No. ESRR/MIZŠ-SAIAL), and partially by the Slovenian Research Agency (research core funding No. P2-0069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Izidor Mlakar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mlakar, I., Verdonik, D., Majhenič, S., Rojc, M. (2019). Towards Pragmatic Understanding of Conversational Intent: A Multimodal Annotation Approach to Multiparty Informal Interaction – The EVA Corpus. In: Martín-Vide, C., Purver, M., Pollak, S. (eds) Statistical Language and Speech Processing. SLSP 2019. Lecture Notes in Computer Science(), vol 11816. Springer, Cham. https://doi.org/10.1007/978-3-030-31372-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31372-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31371-5

  • Online ISBN: 978-3-030-31372-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics