Abstract
We define a pseudorandom function (PRF) \(F: \mathcal {K} \times \mathcal {X} \rightarrow \mathcal {Y}\) to be bi-homomorphic when it is fully Key homomorphic and partially Input Homomorphic (KIH), i.e., given \(F(k_1, x_1)\) and \(F(k_2, x_2)\), there is an efficient algorithm to compute \(F(k_1 \oplus k_2, x_1 \ominus x_2)\), where \(\oplus \) and \(\ominus \) are (binary) group operations. The homomorphism on the input is restricted to a fixed subset of the input bits, i.e., \(\ominus \) operates on some pre-decided m-out-of-n bits, where \(|x_1| = |x_2| = n, m < n\), and the remaining \(n-m\) bits are identical in both inputs. In addition, the output length, \(\ell \), of the operator \(\ominus \) is not fixed and is defined as \(n \le \ell \le 2n\), hence leading to Homomorphically induced Variable input Length (HVL) as \(n \le |x_1 \ominus x_2| \le 2n\). We present a learning with errors (LWE) based construction for a HVL-KIH-PRF family. Our construction is inspired by the key homomorphic PRF construction due to Banerjee and Peikert (Crypto 2014). We use our novel PRF family to construct an updatable encryption scheme, named QPC-UE-UU, which is quantum-safe, post-compromise secure and supports unidirectional ciphertext updates, i.e., the tokens can be used to perform ciphertext updates, but they cannot be used to undo completed updates. Our PRF family also leads to the first left/right key homomorphic constrained-PRF family with HVL.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33, 792–807 (1986)
Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23
Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23
Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20
Parra, J.R., Chan, T., Ho, S.-W.: A Noiseless key-homomorphic PRF: application on distributed storage systems. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 505–513. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_34
Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: CCS 2006, pp. 79–88 (2006)
Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: CCS 2013, pp. 669–684 (2013)
Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15
Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29
Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_2
Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1
Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: FOCS 1996, pp. 514–523 (1996)
Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_17
Protecting data using client-side encryption. http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html
Managing data encryption. http://cloud.google.com/storage/docs/encryption/
Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_4
Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_22
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, pp. 124–134 (1994)
Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)
Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC 2009, pp. 333–342 (2009)
Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)
Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28
Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1
Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2
Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29
Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC 2013, pp. 555–564 (2013)
Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42
Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4
Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9
Pietrzak, K.: Subspace LWE. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 548–563. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_31
Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehle, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584 (2013)
Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Sehrawat, V.S., Desmedt, Y. (2019). Bi-homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption. In: Mu, Y., Deng, R., Huang, X. (eds) Cryptology and Network Security. CANS 2019. Lecture Notes in Computer Science(), vol 11829. Springer, Cham. https://doi.org/10.1007/978-3-030-31578-8_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-31578-8_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-31577-1
Online ISBN: 978-3-030-31578-8
eBook Packages: Computer ScienceComputer Science (R0)