Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Bi-homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption

  • Conference paper
  • First Online:
Cryptology and Network Security (CANS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11829))

Included in the following conference series:

Abstract

We define a pseudorandom function (PRF) \(F: \mathcal {K} \times \mathcal {X} \rightarrow \mathcal {Y}\) to be bi-homomorphic when it is fully Key homomorphic and partially Input Homomorphic (KIH), i.e., given \(F(k_1, x_1)\) and \(F(k_2, x_2)\), there is an efficient algorithm to compute \(F(k_1 \oplus k_2, x_1 \ominus x_2)\), where \(\oplus \) and \(\ominus \) are (binary) group operations. The homomorphism on the input is restricted to a fixed subset of the input bits, i.e., \(\ominus \) operates on some pre-decided m-out-of-n bits, where \(|x_1| = |x_2| = n, m < n\), and the remaining \(n-m\) bits are identical in both inputs. In addition, the output length, \(\ell \), of the operator \(\ominus \) is not fixed and is defined as \(n \le \ell \le 2n\), hence leading to Homomorphically induced Variable input Length (HVL) as \(n \le |x_1 \ominus x_2| \le 2n\). We present a learning with errors (LWE) based construction for a HVL-KIH-PRF family. Our construction is inspired by the key homomorphic PRF construction due to Banerjee and Peikert (Crypto 2014). We use our novel PRF family to construct an updatable encryption scheme, named QPC-UE-UU, which is quantum-safe, post-compromise secure and supports unidirectional ciphertext updates, i.e., the tokens can be used to perform ciphertext updates, but they cannot be used to undo completed updates. Our PRF family also leads to the first left/right key homomorphic constrained-PRF family with HVL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J. ACM (JACM) 33, 792–807 (1986)

    Article  MathSciNet  Google Scholar 

  2. Naor, M., Pinkas, B., Reingold, O.: Distributed pseudo-random functions and KDCs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 327–346. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_23

    Chapter  Google Scholar 

  3. Boneh, D., Lewi, K., Montgomery, H., Raghunathan, A.: Key homomorphic PRFs and their applications. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 410–428. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_23

    Chapter  Google Scholar 

  4. Banerjee, A., Peikert, C.: New and improved key-homomorphic pseudorandom functions. In: Garay, J.A., Gennaro, R. (eds.) CRYPTO 2014. LNCS, vol. 8616, pp. 353–370. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44371-2_20

    Chapter  Google Scholar 

  5. Parra, J.R., Chan, T., Ho, S.-W.: A Noiseless key-homomorphic PRF: application on distributed storage systems. In: Liu, J.K., Steinfeld, R. (eds.) ACISP 2016. LNCS, vol. 9723, pp. 505–513. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40367-0_34

    Chapter  Google Scholar 

  6. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric encryption: improved definitions and efficient constructions. In: CCS 2006, pp. 79–88 (2006)

    Google Scholar 

  7. Kiayias, A., Papadopoulos, S., Triandopoulos, N., Zacharias, T.: Delegatable pseudorandom functions and applications. In: CCS 2013, pp. 669–684 (2013)

    Google Scholar 

  8. Boneh, D., Waters, B.: Constrained pseudorandom functions and their applications. In: Sako, K., Sarkar, P. (eds.) ASIACRYPT 2013. LNCS, vol. 8270, pp. 280–300. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-42045-0_15

    Chapter  Google Scholar 

  9. Boyle, E., Goldwasser, S., Ivan, I.: Functional signatures and pseudorandom functions. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 501–519. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54631-0_29

    Chapter  Google Scholar 

  10. Banerjee, A., Fuchsbauer, G., Peikert, C., Pietrzak, K., Stevens, S.: Key-homomorphic constrained pseudorandom functions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 31–60. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_2

    Chapter  Google Scholar 

  11. Brakerski, Z., Vaikuntanathan, V.: Constrained key-homomorphic PRFs from standard lattice assumptions. In: Dodis, Y., Nielsen, J.B. (eds.) TCC 2015. LNCS, vol. 9015, pp. 1–30. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46497-7_1

    Chapter  Google Scholar 

  12. Bellare, M., Canetti, R., Krawczyk, H.: Pseudorandom functions revisited: the cascade construction and its concrete security. In: FOCS 1996, pp. 514–523 (1996)

    Google Scholar 

  13. Bellare, M., Rogaway, P.: On the construction of variable-input-length ciphers. In: Knudsen, L. (ed.) FSE 1999. LNCS, vol. 1636, pp. 231–244. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_17

    Chapter  Google Scholar 

  14. Protecting data using client-side encryption. http://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

  15. Managing data encryption. http://cloud.google.com/storage/docs/encryption/

  16. Everspaugh, A., Paterson, K., Ristenpart, T., Scott, S.: Key rotation for authenticated encryption. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10403, pp. 98–129. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63697-9_4

    Chapter  Google Scholar 

  17. Lehmann, A., Tackmann, B.: Updatable encryption with post-compromise security. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 685–716. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_22

    Chapter  Google Scholar 

  18. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: FOCS 1994, pp. 124–134 (1994)

    Google Scholar 

  19. Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC 2005, pp. 84–93 (2005)

    Google Scholar 

  20. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem. In: STOC 2009, pp. 333–342 (2009)

    Google Scholar 

  21. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: STOC 2008, pp. 197–206 (2008)

    Google Scholar 

  22. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00457-5_28

    Chapter  MATH  Google Scholar 

  23. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  24. Agrawal, S., Freeman, D.M., Vaikuntanathan, V.: Functional encryption for inner product predicates from learning with errors. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 21–40. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_2

    Chapter  Google Scholar 

  25. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  26. Goldwasser, S., Kalai, Y., Popa, R.A., Vaikuntanathan, V., Zeldovich, N.: Reusable garbled circuits and succinct functional encryption. In: STOC 2013, pp. 555–564 (2013)

    Google Scholar 

  27. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_42

    Chapter  Google Scholar 

  28. Alwen, J., Krenn, S., Pietrzak, K., Wichs, D.: Learning with rounding, revisited. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8042, pp. 57–74. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40041-4_4

    Chapter  Google Scholar 

  29. Bogdanov, A., Guo, S., Masny, D., Richelson, S., Rosen, A.: On the hardness of learning with rounding over small modulus. In: Kushilevitz, E., Malkin, T. (eds.) TCC 2016. LNCS, vol. 9562, pp. 209–224. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49096-9_9

    Chapter  MATH  Google Scholar 

  30. Pietrzak, K.: Subspace LWE. In: Cramer, R. (ed.) TCC 2012. LNCS, vol. 7194, pp. 548–563. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28914-9_31

    Chapter  Google Scholar 

  31. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehle, D.: Classical hardness of learning with errors. In: STOC 2013, pp. 575–584 (2013)

    Google Scholar 

  32. Shamir, A.: How to share a secret. Commun. ACM 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin Singh Sehrawat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sehrawat, V.S., Desmedt, Y. (2019). Bi-homomorphic Lattice-Based PRFs and Unidirectional Updatable Encryption. In: Mu, Y., Deng, R., Huang, X. (eds) Cryptology and Network Security. CANS 2019. Lecture Notes in Computer Science(), vol 11829. Springer, Cham. https://doi.org/10.1007/978-3-030-31578-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31578-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31577-1

  • Online ISBN: 978-3-030-31578-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics