Abstract
The interest in Indoor position systems (IPSs) had been widely increased recently, due to technological advancement. IPSs provide users with location information of various objects inside big buildings, typically using a mobile device. Different wireless technologies are available to provide location service such RF, Wi-Fi, Bluetooth, Visible Light Communication (VLC), etc. IPSs mainly determine the position by analyzing sensory information which is collected by mobile device continuously on real time, unless the user turned off the service. Various services and security issues had been associated with IPSs. Secure positioning become more important and crucial to the success of the delivered service. Location service network that based on off-air signal measurement is susceptible to numerous attacks (e.g. wormhole, sinkhole and Sybil attacks). This paper aims to provide an integrated view of IPSs, technologies and associated security threats that face such positioning systems. The paper compares different wireless indoor position technologies, explore potential attacks, and evaluate IPS protection mechanism.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Li, T., Chen, Y., Zhang, R., Zhang, Y., Hedgpeth, T.: Secure crowdsourced indoor positioning systems. In: IEEE Conference on Computer Communications, Honolulu (2018)
Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems techniques and systems. IEEE Trans. Syst. Man Cybern. 37(6), 1067–1080 (2007)
Mier, J., Jaramillo-Alcázar, A., Freire, J.J.: At a glance: indoor positioning systems technologies and their applications areas. In: Rocha, Á., Ferrás, C., Paredes, M. (eds.) Information Technology and Systems. ICITS 2019. Advances in Intelligent Systems and Computing, vol. 918, pp. 483–493. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11890-7_47
Van Haute, T., et al.: Performance analysis of multiple Indoor Positioning Systems in a healthcare environment. Int. J. Health Geogr. 15(1), 1–15 (2016)
Mišić, J., Milovanović, B., Vasić, N., Milovanović, I.: An overview of wireless indoor positioning systems. Infoteh-Jahorina 14, 301–306 (2015)
Yassin, A., et al.: Recent advances in indoor localization: a survey on theoretical approaches and applications. IEEE Commun. Surv. Tutorials 19, 1327–1346 (2017)
Zafari, F., Kin, L.K.: A survey of indoor localization systems and technologies. IEEE Commun. Surv. Tutorials 21, 2568–2599 (2018)
Kim, S., Ha, S., Saad, A., Kim, J.: Indoor positioning system techniques and security. In: IEEE-Forth International Conference on e-Technologies and Networks for Development (ICeND), pp. 1–4 (2015). 10.1109(7328540)
Cisco, Wi-Fi Location-Based Services 4.1 Design Guide, Cisco Systems, Inc., San Jose (2008)
Disha, A.M.: A comparative analysis on indoor positioning techniques and systems. Int. J. Eng. Res. Appl. (IJERA) 3(2), 1790–1796 (2013)
Malik, A., Zulfiqar, T., Javed, M.A., Nafi, N.S., Lodhi, H.: Performance evaluation of Wi-Fi finger printing based indoor positioning system. In: 2018 IEEE Conference on Wireless Sensors (ICWiSe), Langkawi (2018)
Zhuang, Y., et al.: A survey of positioning systems using visible LED lights. IEEE Commun. Surv. Tutorials 20(3), 1963–1988 (2018)
Bouet, M., Dos Santos, A.L.: RFID tags: positioning principles and localization techniques. In: 1st IFIP Wireless Days, Dubai, pp. 1–5 (2008)
Gu, Y., Lo, A., Niemegeers, I.: A survey of indoor positioning systems for wireless personal networks. IEEE Commun. Surv. Tutorials 11(1), 13–32 (2009)
García, E., Poudereux, P., Hernández, Á., García, J.J., Ureña, J.: DS-UWB indoor positioning system implementation based on FPGAs. Sens. Actuators A. Phys. 201, 172–181 (2013)
Alarifi, A., et al.: Ultra-wideband indoor positioning technologies: analysis and recent advances. Sensors 16, 707 (2016)
Mousa, F.I.K., Almaadeed, N., Busawon, K., Bouridane, A., Binns, R., Elliot, I.: Indoor visible light communication localization system utilizing received signal strength indication technique and trilateration method. Opt. Eng. Digit. Lib. 57, 016107 (2018)
Brena, R.F.: Evolution of indoor positioning technologies: a survey. J. Sens. 2017, 21 (2017)
Rajagopal, N., Lazik, P., Rowe, A.: Visual light landmarks for mobile devices. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp. 249–260. IEEE Press, April 2014
Do, T.-H., Yoo, M.: An in-depth survey of visible light communication based positioning systems. Sensors 16(5), 678 (2016)
Hernandez, O., Jain, V., Chakravarty, S., Bhargava, P.: Position Location Monitoring Using IEEE 802.15.4 ZigBee technology. http://www.nxp.com/assets/documents/data/en/brochures/PositionLocationMonitoring.pdf. Accessed 5 Dec 2016
Kaushal, K., Kaur, T., Kaur, J.: ZigBee based wireless sensor networks. Int. J. Comput. Sci. Inf. Technol. (IJCSIT) 5(6), 7752–7755 (2014)
Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52, 2292–2330 (2008)
Yang, J., Chen, Y., Trappe, W., Chen, J.: Detection and localization of multiple spoofing attackers in wireless networks. IEEE Trans. Parallel Distrib. Syst. 24(1), 44–58 (2013)
Kibirige, G.W., Sanga, C.: A survey on detection of sinkhole attack in wireless sensor network. arXiv preprint arXiv:1505.01941 (2015)
Yuan, Y., Huo, L., Wang, Z., Hogrefe, D.: Secure APIT localization scheme against sybil attacks in distributed wireless sensor networks. IEEE Access 6(2018), 27629–27636 (2018)
Jiang, J., Han, G., Zhu, C., Dong, Y., Zhang, N.: Secure localization in wireless sensor networks: a survey. J. Commun. 6(6), 460–470 (2011)
Singh, V.P., Anand Ukey, A.S., Jain, S.: Signal strength based hello flood attack detection and prevention in wireless sensor networks. Int. J. Comput. Appl. 62(15), 1–6 (2013)
Ning, P., Liu, A.: Mitigating DoS attacks against broadcast authentication in wireless sensor networks. ACM Trans. Sens. Netw. 4(1), 1–3 (2008)
Boukerche, A., Nakamura, E.F., Loureiro, A.A.F.: Secure localization algorithms for wireless sensor networks. IEEE Commun. Mag. 0163–6804, 96–101 (2008)
Liu, D., Ning, P.: Detecting malicious beacon nodes for secure location discovery in wireless sensor network. In: 25th IEEE International Conference on Distributed Computing Systems, pp. 1063–6927 (2005)
Srinivasan, A., Teitelbaum, J., Wu, J.: DRBTS: distributed reputation-based beacon trust system. In: 2nd IEEE International Symposium on Dependable, Autonomic and Secure Computing, Indianapolis, pp. 277–283 (2006)
Liu, D., Ning, P., Du, W.K.: Attack-resistant location estimation in sensor networks. ACM Trans. Inf. Syst. Secur. (TISSEC) 11(4), 22 (2008)
Mukhopadhyay, B., Srirangarajan, S., Kar, S.: Robust range-based secure localization in wireless sensor networks. In: IEEE Global Communications Conference (GLOBECOM), Abu Dhabi (2018)
Hamid, A., Rashid, M., Hong, C.S.: Defense against lap-top class attacker in wireless sensor network. In: 8th International Conference Advanced Communication Technology, pp. 318–323, February 2006
Singh, V.P., Jain, S., Singhai, J.: Hello flood attack and its countermeasures in wireless sensor network. IJCSI Int. J. Comput. Sci. Issues 7(3), 23–26 (2010)
Lazos, L., Poovendran, R.: SeRLoc: secure range-independent localization for wireless sensor networks. In: 4th ACM Workshop on Wireless Security, Philadelphia, pp. 21–33, October 2004
Srinivasan, A., Wu, J.: A survey on secure localization in wireless sensor networks. In: Wireless and Mobile Communications. CRC Press/Taylor and Francis Group, London (2007)
Mohd, W.G., Sharma, S., Saklani, A., Singhal, A.: HiRLoc: high-resolution robust localization for wireless sensor networks. J. Comput. Eng. (IOSR-JCE) 16(2), 112–115 (2014)
Capkun, S., Hubaux, J.-P.: Secure positioning of wireless devices with application to sensor networks. In: Proceedings of IEEE Computer and Communications Societies, vol. 3, pp. 1917–1928 (2005)
Lazos, L., Poovendran, R., Capkun, S.: Robust position estimation in wireless sensor networks. In: Proceedings of the 4th International Symposium on Information Processing in Sensor Networks, pp. 324–331 (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Chebli, M.S., Mohammad, H., Amer, K.A. (2019). An Overview of Wireless Indoor Positioning Systems: Techniques, Security, and Countermeasures. In: Montella, R., Ciaramella, A., Fortino, G., Guerrieri, A., Liotta, A. (eds) Internet and Distributed Computing Systems . IDCS 2019. Lecture Notes in Computer Science(), vol 11874. Springer, Cham. https://doi.org/10.1007/978-3-030-34914-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-34914-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-34913-4
Online ISBN: 978-3-030-34914-1
eBook Packages: Computer ScienceComputer Science (R0)