Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Temporal-Clustering Based Technique for Identifying Thermal Regions in Buildings

  • Conference paper
  • First Online:
Advanced Concepts for Intelligent Vision Systems (ACIVS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12002))

  • 1513 Accesses

Abstract

Nowadays, moistures and thermal leaks in buildings are manually detected by an operator, who roughly delimits those critical regions in thermal images. Nevertheless, the use of artificial intelligence (AI) techniques can greatly improve the manual thermal analysis, providing automatically more precise and objective results. This paper presents a temporal-clustering based technique that carries out the segmentation of a set of thermal orthoimages (STO) of a wall, which have been taken at different times. The algorithm has two stages: region labelling and consensus. In order to delimit regions with similar temporal temperature variation, three clustering algorithms are applied on STO, obtaining the respective three labelled images. In the second stage, a consensus algorithm between the labelled images is applied. The method thus delimitates regions with different thermal evolutions over time, each characterized by a temperature consensus vector. The approach has been tested in real scenes by using a 3D thermal scanner. A case study, composed of 48 thermal orthoimages at 30 min-intervals over 24 h, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, C., Cho, Y.K., Gai, M.: As-Is 3D thermal modeling for existing building envelopes using a hybrid LIDAR system. J. Comput. Civ. Eng. 27(6), 645–656 (2013). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000273

    Article  Google Scholar 

  2. Ham, Y., Golparvar-Fard, M.: An automated vision-based method for rapid 3D energy performance modeling of existing buildings using thermal and digital imagery. Adv. Eng. Inform. 27(3), 395–409 (2013). https://doi.org/10.1016/j.aei.2013.03.005

    Article  Google Scholar 

  3. Rangel, J., et al.: 3D thermal imaging: fusion of thermography and depth cameras. In: Conference on Quantitative InfraRed Thermography (2014)

    Google Scholar 

  4. Borrmann, D., et al.: A mobile robot based system for fully automated thermal 3D mapping. Adv. Eng. Inform. 28(4), 425–440 (2014). https://doi.org/10.1016/j.aei.2014.06.002

    Article  Google Scholar 

  5. Adán, A., Prieto, S.A., Quintana, B., Prado, T., García, J.: An autonomous thermal scanning system with which to obtain 3D thermal models of buildings. In: Mutis, I., Hartmann, T. (eds.) Advances in Informatics and Computing in Civil and Construction Engineering, pp. 489–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-00220-6_58

    Chapter  Google Scholar 

  6. Garrido, I., Lagüela, S., Arias, P., Balado, J.: Thermal-based analysis for the automatic detection and characterization of thermal bridges in buildings. Energy Build. 158, 1358–1367 (2018). https://doi.org/10.1016/j.enbuild.2017.11.031

    Article  Google Scholar 

  7. Hoegner, L., Stilla, U.: Building facade object detection from terrestrial thermal infrared image sequences combining different views. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-3/W4, pp. 55–62, March 2015. https://doi.org/10.5194/isprsannals-ii-3-w4-55-2015

    Article  Google Scholar 

  8. González-Aguilera, D., Rodriguez-Gonzalvez, P., Armesto, J., Lagüela, S.: Novel approach to 3D thermography and energy efficiency evaluation. Energy Build. 54, 436–443 (2012). https://doi.org/10.1016/j.enbuild.2012.07.023

    Article  Google Scholar 

  9. López-Fernández, L., Lagüela, S., González-Aguilera, D., Lorenzo, H.: Thermographic and mobile indoor mapping for the computation of energy losses in buildings. Indoor Built Environ. 26(6), 771–784 (2017). https://doi.org/10.1177/1420326X16638912

    Article  Google Scholar 

  10. Demisse, G.G., Borrmann, D., Nuchter, A., Nüchter, A., Nuchter, A., Nüchter, A.: Interpreting thermal 3D models of indoor environments for energy efficiency. J. Intell. Rob. Syst. Theor. Appl. 77(1), 55–72 (2015). https://doi.org/10.1007/s10846-014-0099-5

    Article  MATH  Google Scholar 

  11. Fernández-Llorca, D., Lorente, A.G., Fernández, C., Daza, I.G., Sotelo, M.A.: Automatic thermal leakage detection in building facades using laser and thermal images. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013. LNCS, vol. 8112, pp. 71–78. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53862-9_10

    Chapter  Google Scholar 

  12. Golparvar-Fard, M., Ham, Y.: Automated diagnostics and visualization of potential energy performance problems in existing buildings using energy performance augmented reality models. J. Comput. Civ. Eng. 28(1), 17–29 (2014). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000311

    Article  Google Scholar 

  13. Ham, Y., Golparvar-Fard, M.: Automated cost analysis of energy loss in existing buildings through. In: ISARC 2013 - 30th International Symposium on Automation and Robotics in Construction and Mining, Held in Conjunction with the 23rd World Mining Congress, pp. 1065–1073 (2013)

    Google Scholar 

  14. Natephra, W., Motamedi, A., Yabuki, N., Fukuda, T.: Integrating 4D thermal information with BIM for building envelope thermal performance analysis and thermal comfort evaluation in naturally ventilated environments. Build. Environ. 124, 194–208 (2017). https://doi.org/10.1016/j.buildenv.2017.08.004

    Article  Google Scholar 

  15. Natephra, W., Motamedi, A., Yabuki, N., Fukuda, T., Michikawa, T.: Building envelope thermal performance analysis using BIM-based 4D thermal information visualization. In: Conference: 16th International Conference on Computing in Civil and Building Engineering (ICCCBE2016) (2016)

    Google Scholar 

  16. Adán, A., Huber, D.: Reconstruction of wall surfaces under occlusion and clutter in 3D indoor environments, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA CMU-RI-TR-10-12 (2010)

    Google Scholar 

  17. Hartigan, J.A., Wong, M.A.: Algorithm AS 136: a K-means clustering algorithm. Appl. Stat. 28(1), 100 (1979). https://doi.org/10.2307/2346830

    Article  MATH  Google Scholar 

  18. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)

    Book  Google Scholar 

  19. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996 Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, pp. 103–114 (1996)

    Google Scholar 

  20. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  21. Quintana, B., Prieto, S.A., Adán, A., Vázquez, A.S.: Semantic scan planning for indoor structural elements of buildings. Adv. Eng. Inform. (2016). https://doi.org/10.1016/j.aei.2016.08.003

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by the Spanish Economy and Competitiveness Ministry [DPI2016-76380-R project].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Adán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Adán, A., García, J., Quintana, B., Castilla, F.J., Pérez, V. (2020). Temporal-Clustering Based Technique for Identifying Thermal Regions in Buildings. In: Blanc-Talon, J., Delmas, P., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2020. Lecture Notes in Computer Science(), vol 12002. Springer, Cham. https://doi.org/10.1007/978-3-030-40605-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-40605-9_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-40604-2

  • Online ISBN: 978-3-030-40605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics