Abstract
The aim of this paper is to introduce n-ary BiHom-algebras, generalizing BiHom-algebras. We introduce an alternative concept of BiHom-Lie algebra called BiHom-Lie-Leibniz algebra and study various type of n-ary BiHom-Lie algebras and BiHom-associative algebras. We show that n-ary BiHom-Lie-Leibniz algebra can be represented by BiHom-Lie-Leibniz algebra through fundamental objects. Moreover, we provide some key constructions and study n-ary BiHom-Lie algebras induced by \((n-1)\)-ary BiHom-Lie algebra.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abramov, V.: Super \(3\)-Lie algebras induced by super Lie algebras. Adv. Appl. Clifford Algebr. 27(1), 9–16 (2017)
Aizawa, N., Sato, H.: \(q\)-deformation of the Virasoro algebra with central extension. Phys. Lett. B 256, 185–190 (1991) (Hiroshima University preprint, preprint HUPD-9012 (1990))
Ammar, F., Mabrouk, S., Makhlouf, A.: Representation and cohomology of \(n\)-ary multiplicative Hom-Nambu-Lie algebras. J. Geom. Phys. 61, 1898–1913 (2011)
Arnlind, J., Kitouni, A., Makhlouf, A., Silvestrov, S.: Structure and cohomology of \(3\)-Lie algebras induced by Lie algebras. In: Makhlouf, A., Paal, E., Silvestrov, S., Stolin, A. (eds.), Algebra, Geometry and Mathematical Physics. Springer Proceedings in Mathematics and & Statistics, vol 85 (2014)
Arnlind, J., Makhlouf, A., Silvestrov, S.: Ternary Hom-Nambu-Lie algebras induced by Hom-Lie algebras, J. Math. Phys. 51, 043515, 11 pp. (2010)
Arnlind, J., Makhlouf, A., Silvestrov, S.: Construction of \(n\)-Lie algebras and \(n\)-ary Hom-Nambu-Lie algebras, J. Math. Phys. 52, 123502, 13 pp. (2011)
Ataguema, H., Makhlouf, A., Silvestrov, S.: Generalization of \(n\)-ary Nambu algebras and beyond. J. Math. Phys. 50, 083501 (2009)
Awata, H., Li, M., Minic, D., Yoneya, T.: On the quantization of Nambu brackets. J. High Energy Phys. 2, Paper 13, 17 pp. (2001)
Caenepeel, S., Goyvaerts, I.: Monoidal Hom-Hopf Algebras. Commun. Algebr. 39(6), 2216–2240 (2011)
Chaichian, M., Ellinas, D., Popowicz, Z.: Quantum conformal algebra with central extension. Phys. Lett. B 248, 95–99 (1990)
Chaichian, M., Isaev, A.P., Lukierski, J., Popowic, Z., Prešnajder, P.: \(q\)-deformations of Virasoro algebra and conformal dimensions. Phys. Lett. B 262(1), 32–38 (1991)
Chaichian, M., Kulish, P., Lukierski, J.: \(q\)-deformed Jacobi identity, \(q\)-oscillators and \(q\)-deformed infinite-dimensional algebras. Phys. Lett. B 237, 401–406 (1990)
Chaichian, M., Popowicz, Z., Prešnajder, P.: \(q\)-Virasoro algebra and its relation to the \(q\)-deformed KdV system. Phys. Lett. B 249, 63–65 (1990)
Curtright, T.L., Zachos, C.K.: Deforming maps for quantum algebras. Phys. Lett. B 243, 237–244 (1990)
Damaskinsky, E. V., Kulish, P. P.: Deformed oscillators and their applications (in Russian), Zap. Nauch. Semin. LOMI 189, 37-74 (1991) (Engl. translation in J. Sov. Math., 62, 2963-2986 (1992))
Daskaloyannis, C.: Generalized deformed Virasoro algebras. Modern Phys. Lett. A 7(9), 809–816 (1992)
Daletskii, Y.L., Takhtajan, L.A.: Leibniz and Lie algebra structures for Nambu algebra. Lett. Math. Phys. 39, 127–141 (1997)
Filippov, V., T.: \(n\)-Lie algebras, Siberian Math. J. 26, 879–891, : Translated from Russian: Sib. Mat. Zh. 26(1985), 126–140 (1985)
Graziani, G., Makhlouf, A., Menini, C., Panaite, F.: BiHom-associative algebras, BiHom-Lie algebras and BiHom-Bialgebras. SIGMA 11(086), 34 pp (2015)
Hartwig, J.T., Larsson, D., Silvestrov, S. D.: Deformations of Lie algebras using \(\sigma -\)derivations. J. Algebr. 295, 314–361 (2006) (Preprint in Mathematical Sciences 2003:32, LUTFMA-5036-2003, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, 52 pp. (2003))
Hu, N.: \(q\)-Witt algebras, \(q\)-Lie algebras, \(q\)-holomorph structure and representations. Algebra Colloq. 6(1), 51–70 (1999)
Kassel, C.: Cyclic homology of differential operators, the virasoro algebra and a \(q\)-analogue. Commun. Math. Phys. 146(2), 343–356 (1992)
Kasymov, ShM: Theory of \(n\)-Lie algebras. Algebr. Logic. 26, 155–166 (1987)
Kitouni, A., Makhlouf, A.: On structure and central extensions of \((n+1)\)-Lie algebras induced by \(n\)-Lie algebras (2014). arXiv:1405.5930
Kitouni, A., Makhlouf, A., Silvestrov, S.: On \((n+1)\)-Hom-Lie algebras induced by \(n\)-Hom-Lie algebras Georgian Math. J. 23(1), 75–95 (2016)
Larsson, D., Sigurdsson, G., Silvestrov, S.D.: Quasi-Lie deformations on the algebra \(\mathbb{F}[t]/(t^N)\). J. Gen. Lie Theory Appl. 2, 201–205 (2008)
Larsson, D., Silvestrov, S. D.: Quasi-Hom-Lie algebras, Central Extensions and \(2\)-cocycle-like identities, J. Algebra 288, 321-344 (2005) (Preprints in Mathematical Sciences 2004:3, LUTFMA-5038-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University, (2004))
Larsson, D., Silvestrov, S. D.: Quasi-Lie algebras. In: Fuchs, J., Mickelsson, J., Rozanblioum, G., Stolin, A., Westerberg, A. (eds.), Noncommutative Geometry and Representation Theory in Mathematical Physics. Contemporary Mathematics, vol. 391, 241–248. American Mathematical Society, Providence, RI, (2005) (Preprints in Mathematical Sciences 2004:30, LUTFMA-5049-2004, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2004))
Larsson, D., Silvestrov, S.D.: Graded quasi-Lie agebras. Czechoslovak J. Phys. 55, 1473–1478 (2005)
Larsson, D., Silvestrov, S.D.: Quasi-deformations of \(sl_2(\mathbb{F})\) using twisted derivations. Comm. in Algebra 35, 4303–4318 (2007)
Liu, K.Q.: Quantum central extensions, C. R. Math. Rep. Acad. Sci. Canada 13(4), 135–140 (1991)
Liu, K.Q.: Characterizations of the Quantum Witt Algebra. Lett. Math. Phys. 24(4), 257–265 (1992)
Liu, K.Q.: The Quantum Witt Algebra and Quantization of Some Modules over Witt Algebra. University of Alberta, Edmonton, Canada, Department of Mathematics (1992). PhD Thesis
Makhlouf, A., Silvestrov, S. D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008) (Preprints in Mathematical Sciences 2006:10, LUTFMA-5074-2006, Centre for Mathematical Sciences, Department of Mathematics, Lund Institute of Technology, Lund University (2006))
Nambu, Y.: Generalized Hamiltonian dynamics. Phys. Rev. D 3(7), 2405–2412 (1973)
Richard, L., Silvestrov, S.D.: Quasi-Lie structure of \(\sigma \)-derivations of \(\mathbb{C}[t^{\pm 1}]\). J. Algebra 319(3), 1285–1304 (2008)
Sheng, Y.: Representation of Hom-Lie algebras. Algebr. Reprensent. Theory 15(6), 1081–1098 (2012)
Sigurdsson, G., Silvestrov, S.: Lie color and Hom-Lie algebras of Witt type and their central extensions, In: Silvestrov, S., Paal, E., Abramov, V., Stolin, A. (eds.), Generalized Lie Theory in Mathematics, Physics and Beyond, 247–255. Springer, Berlin (2009)
Sigurdsson, G., Silvestrov, S.: Graded quasi-Lie algebras of Witt type. Czech. J. Phys. 56, 1287–1291 (2006)
Takhtajan, L.A.: On foundation of the generalized Nambu mechanics. Comm. Math. Phys. 160(2), 295–315 (1994)
Takhtajan, L.A.: Higher order analog of Chevalley-Eilenberg complex and deformation theory of \(n\)-gebras. St. Petersburg Math. J. 6(2), 429–438 (1995)
Yau, D.: A Hom-associative analogue of Hom-Nambu algebras, arXiv: 1005.2373 [math.RA] (2010)
Yau, D.: Enveloping algebras of Hom-Lie algebras. J. Gen. Lie Theory Appl. 2(2), 95–108 (2008)
Yau, D.: Hom-algebras and homology. Journal of Lie Theory 19(2), 409–421 (2009)
Yau, D.: On \(n\)-ary Hom-Nambu and Hom-Nambu-Lie algebras. J. Geom. Phys. 62, 506–522 (2012)
Acknowledgements
A. Kitouni is grateful to the research environment in Mathematics and Applied Mathematics (MAM), Division of Applied Mathematics at the School of Education, Culture and Communication at Mälardalen University, Västerås, Sweden for providing support and excellent research environment during his visits to Mälardalen University when part of the work on this paper has been performed.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Kitouni, A., Silvestrov, S., Makhlouf, A. (2020). On n-ary Generalization of BiHom-Lie Algebras and BiHom-Associative Algebras. In: Silvestrov, S., Malyarenko, A., Rančić, M. (eds) Algebraic Structures and Applications. SPAS 2017. Springer Proceedings in Mathematics & Statistics, vol 317. Springer, Cham. https://doi.org/10.1007/978-3-030-41850-2_5
Download citation
DOI: https://doi.org/10.1007/978-3-030-41850-2_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-41849-6
Online ISBN: 978-3-030-41850-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)