Abstract
Anonymous password-authenticated key exchange (APAKE) protocols allow for authenticating legitimate users via low-entropy passwords while keeping their actual identities private. They are important cryptographic primitives for privacy protection, which have attracted much attention recently and have been standardized in the international standard ISO/IEC 20009-4. However, most of the existing APAKE schemes (especially including all the APAKE schemes in the storage-extra setting) are developed in the random oracle model. In this paper, we present the first storage-extra APAKE protocol in the standard model by combing the technique of algebraic MAC with oblivious designated-verifier non-interactive zero-knowledge (DVNIZK) proof. Toward our aim, we first give out a new construction of the oblivious DVNIZK proof system, which is compatible with a new class of algebraic MAC schemes. As a consequence, our APAKE protocol needs only 2 flows of messages in the authentication phase, which is very efficient in terms of rounds. Moreover, we show that this protocol enjoys stronger security guarantees while achieves considerably computational performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
As pointed out by Camenisch et al. [26], the auxiliary information \( \sigma _j \) are not required for the MAC verification, but they are useful to improve the efficiency of credential presentation, and additionally remove the requirement of extended unforgeability.
- 2.
Beyond a single value of identity, here we consider a vector of attributes, which could handle more complex access policies such as expiration dates and access rights.
- 3.
Together with the credential \(\varSigma \), the server perhaps, if needed, sends a zero-knowledge proof proving that this MAC tag is honestly generated. The ZK proof could be either a NIZK proof secure in the random oracle model, or a DVNIZK proof secure in the standard model where the proving key is sent to the server along with the attributes.
References
Wang, D., Zhang, Z., Wang, P., Yan, J., Huang, X.: Targeted online password guessing: an underestimated threat. In: ACM CCS 2016, pp. 1242–1254. ACM (2016)
Bellovin, S., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: IEEE Computer Society Symposium on Research in Security and Privacy, pp. 72–84 (1992)
Jiang, Q., Qian, Y., Ma, J., Ma, X., Cheng, Q., Wei, F.: User centric three-factor authentication protocol for cloud-assisted wearable devices. Int. J. Commun. Syst. 32(6), e3900 (2019)
Wang, D., Cheng, H., Wang, P., Huang, X., Jian, G.: Zipf’s law in passwords. IEEE Trans. Inf. Forensics Secur. 12(11), 2776–2791 (2017)
Abdalla, M.: Password-based authenticated key exchange: an overview. In: Chow, S.S.M., Liu, J.K., Hui, L.C.K., Yiu, S.M. (eds.) ProvSec 2014. LNCS, vol. 8782, pp. 1–9. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12475-9_1
Schmidt, J.: Requirements for password-authenticated key agreement (PAKE) schemes. RFC 8125 (2017)
Lindell, Y.: Anonymous authentication. J. Priv. Confid. 2(2), 35–63 (2007)
Viet, D.Q., Yamamura, A., Tanaka, H.: Anonymous password-based authenticated key exchange. In: Maitra, S., Veni Madhavan, C.E., Venkatesan, R. (eds.) INDOCRYPT 2005. LNCS, vol. 3797, pp. 244–257. Springer, Heidelberg (2005). https://doi.org/10.1007/11596219_20
Shin, S.H., Kobara, K., Imai, H.: A secure threshold anonymous password-authenticated key exchange protocol. In: Miyaji, A., Kikuchi, H., Rannenberg, K. (eds.) IWSEC 2007. LNCS, vol. 4752, pp. 444–458. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75651-4_30
Shin, S.H., Kobara, K., Imai, H.: Very-efficient anonymous password-authenticated key exchange and its extensions. In: Bras-Amorós, M., Høholdt, T. (eds.) AAECC 2009. LNCS, vol. 5527, pp. 149–158. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02181-7_16
Yang, J., Zhang, Z.: A new anonymous password-based authenticated key exchange protocol. In: Chowdhury, D.R., Rijmen, V., Das, A. (eds.) INDOCRYPT 2008. LNCS, vol. 5365, pp. 200–212. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89754-5_16
Zhang, Q., Chaudhary, P., Kumari, S., Kong, Z., Liu, W.: Verifier-based anonymous password-authenticated key exchange protocol in the standard model. Math. Biosci. Eng. 16(5), 3623–3640 (2019)
Yang, Y., Zhou, J., Weng, J., Bao, F.: A new approach for anonymous password authentication. In: the 25th Annual Computer Security Applications Conference, pp. 199–208, December 2009
Yang, Y., Zhou, J., Wong, J.W., Bao, F.: Towards practical anonymous password authentication. In: the 26th Annual Computer Security Applications Conference, pp. 59–68. ACM (2010)
Zhang, Z., Yang, K., Hu, X., Wang, Y.: Practical anonymous password authentication and TLS with anonymous client authentication. In: ACM CCS 2016, pp. 1179–1191. ACM (2016)
Shin, S., Kobara, K.: Simple anonymous password-based authenticated key exchange (SAPAKE), reconsidered. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 100(2), 639–652 (2017)
ISO/IEC 20009-4: Information technology - security techniques - anonymous entity authentication - part 4: Mechanisms based on weak secrets. Standard (2019). https://www.iso.org/standard/64288.html
Hu, X., Zhang, J., Zhang, Z., Liu, F.: Anonymous password authenticated key exchange protocol in the standard model. Wirel. Pers. Commun. 96(1), 1451–1474 (2017)
Leurent, G., Nguyen, P.Q.: How risky is the random-oracle model? In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 445–464. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03356-8_26
Chaidos, P., Couteau, G.: Efficient designated-verifier non-interactive zero-knowledge proofs of knowledge. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 193–221. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_7
Dodis, Y., Kiltz, E., Pietrzak, K., Wichs, D.: Message authentication, revisited. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 355–374. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_22
Couteau, G., Reichle, M.: Non-interactive keyed-verification anonymous credentials. In: Lin, D., Sako, K. (eds.) PKC 2019. LNCS, vol. 11442, pp. 66–96. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17253-4_3
Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification anonymous credentials. In: ACM CCS 2014, pp. 1205–1216. ACM (2014)
Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH assumption in bilinear groups. J. Cryptol. 21(2), 149–177 (2008)
Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and practical keyed-verification anonymous credentials. In: Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 360–380. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69453-5_20
Camenisch, J., Drijvers, M., Dzurenda, P., Hajny, J.: Fast keyed-verification anonymous credentials on standard smart cards. In: Dhillon, G., Karlsson, F., Hedström, K., Zúquete, A. (eds.) SEC 2019. IAICT, vol. 562, pp. 286–298. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22312-0_20
Camenisch, J., Hohenberger, S., Kohlweiss, M., Lysyanskaya, A., Meyerovich, M.: How to win the clonewars: efficient periodic n-times anonymous authentication. In: ACM CCS 2006, pp. 201–210. ACM (2006)
Damgård, I., Jurik, M., Nielsen, J.B.: A generalization of Paillier’s public-key system with applications to electronic voting. Int. J. Inf. Secur. 9(6), 371–385 (2010)
Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16
Castagnos, G., Laguillaumie, F.: Linearly homomorphic encryption from \(\sf DDH\). In: Nyberg, K. (ed.) CT-RSA 2015. LNCS, vol. 9048, pp. 487–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16715-2_26
Halevi, S., Krawczyk, H.: One-pass HMQV and asymmetric key-wrapping. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 317–334. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19379-8_20
Acknowledgments
Qihui Zhang and Wenfen Liu are supported by the National Nature Science Foundation of China (Grant Nos. 61862011, 61872449), and Guangxi Natural Science Foundation (Grant No. 2018GXNSFAA138116) and the Guangxi Key Laboratory of Cryptography and Information Security (Grant No. GCIS201704). Kang Yang is supported by the National Key Research and Development Program of China (Grant No. 2018YFB0804105), and the National Natural Science Foundation of China (Grant Nos. 61932019, 61802021).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Q., Liu, W., Yang, K., Hu, X., Mei, Y. (2020). Round-Efficient Anonymous Password-Authenticated Key Exchange Protocol in the Standard Model. In: Liu, Z., Yung, M. (eds) Information Security and Cryptology. Inscrypt 2019. Lecture Notes in Computer Science(), vol 12020. Springer, Cham. https://doi.org/10.1007/978-3-030-42921-8_30
Download citation
DOI: https://doi.org/10.1007/978-3-030-42921-8_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-42920-1
Online ISBN: 978-3-030-42921-8
eBook Packages: Computer ScienceComputer Science (R0)