Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Overview of Python

  • Chapter
  • First Online:
Python for Marketing Research and Analytics

Abstract

In this chapter, we cover just enough of Python to get you going. If you’re new to programming, this chapter will get you started well enough to be productive and we’ll call out ways to learn more at the end. Python is a great place to learn to program because its syntax is simpler and it has less overhead (e.g. memory management) than traditional programming languages such as Java or C+ +. If you’re an experienced programmer in another language, you should skim this chapter to learn the essentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anaconda, Inc (2019) Anaconda Software Distribution. URL https://www.anaconda.com

  • Bush BM (1996) The perils of floating point. URL http://www.lahey.com/float.htm

  • Hunter JD (2007) Matplotlib: A 2d graphics environment. Computing In Science & Engineering 9(3):90–95, https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  • Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J, Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing C (2016) Jupyter notebooks – a publishing format for reproducible computational workflows. In: Loizides F, Schmidt B (eds) Positioning and Power in Academic Publishing: Players, Agents and Agendas, IOS Press, pp 87–90

    Google Scholar 

  • McKinney W (2010) Data structures for statistical computing in Python . In: van der Walt S, Millman J (eds) Proceedings of the 9th Python in Science Conference, pp 51 – 56

    Google Scholar 

  • McKinney W (2018) Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython, 2nd edn. O’Reilly Media, URL https://github.com/wesm/pydata-book

  • Oliphant T (2006–2020) A Guide to NumPy. URL http://www.numpy.org/, [Online; accessed <today>]

  • Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 12:2825–2830

    MathSciNet  MATH  Google Scholar 

  • Peterson B (2008–2019) Python 2.7 Release Schedule. URL https://www.python.org/dev/peps/pep-0373/

  • RStudio (2019) RStudio: Integrated Development Environment for R. RStudio, Boston, MA, URL http://www.rstudio.org/, version 1.2.5033

  • Seabold S, Perktold J (2010) Statsmodels: Econometric and statistical modeling with Python. In: 9th Python in Science Conference

    Google Scholar 

  • Waskom M, Botvinnik O, O’Kane D, Hobson P, Ostblom J, Lukauskas S, Gemperline DC, Augspurger T, Halchenko Y, Cole JB, Warmenhoven J, de Ruiter J, Pye C, Hoyer S, Vanderplas J, Villalba S, Kunter G, Quintero E, Bachant P, Martin M, Meyer K, Miles A, Ram Y, Brunner T, Yarkoni T, Williams ML, Evans C, Fitzgerald C, Brian, Qalieh A (2018) mwaskom/seaborn: v0.9.0 (July 2018). https://doi.org/10.5281/zenodo.1313201

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schwarz, J.S., Chapman, C., McDonnell Feit, E. (2020). An Overview of Python. In: Python for Marketing Research and Analytics. Springer, Cham. https://doi.org/10.1007/978-3-030-49720-0_2

Download citation

Publish with us

Policies and ethics