Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Fuzzy-Based Simulation System for Driving Risk Management in VANETs Considering Weather Condition as a New Parameter

  • Conference paper
  • First Online:
Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS 2020)

Abstract

In this paper, we propose an intelligent Fuzzy-based Simulation System for Driver Risk Management in Vehicular Ad hoc Networks (VANETs). The proposed system considers Vehicle’s Environment Condition (VEC), Weather Condition (WC), Vehicle Speed (VS) and Driver’s Health Condition (DHC) to assess the risk level. The input parameters’ data can come from different sources, such as on board and on road sensors, sensors in the infrastructure and communications. Based on the system’s output i.e., risk level, a smart box informs the driver and provides assistance. We show through simulations the effect of the considered parameters on the determination of the risk level and demonstrate a few actions that can be performed accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bylykbashi, K., Elmazi, D., Matsuo, K., Ikeda, M., Barolli, L.: Effect of security and trustworthiness for a fuzzy cluster management system in VANETs. Cogn. Syst. Res. 55, 153–163 (2019). https://doi.org/10.1016/j.cogsys.2019.01.008

    Article  Google Scholar 

  2. Bylykbashi, K., Elmazi, D., Matsuo, K., Ikeda, M., Barolli, L.: Implementation of a fuzzy-based simulation system and a testbed for improving driving conditions in VANETs. In: International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 3–12. Springer (2019). https://doi.org/10.1007/978-3-030-22354-01

  3. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L.: A fuzzy-based system for driving risk measurement (FSDRM) in VANETs: a comparison study of simulation and experimental results. In: International Conference on P2P, Parallel, Grid, Cloud and Internet Computing, pp. 14–25. Springer (2019)

    Google Scholar 

  4. Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L.: Fuzzy-based Driver Monitoring System (FDMS): implementation of two intelligent FDMSs and a testbed for safe driving in VANETs. Futur. Gener. Comput. Syst. 105, 665–674 (2020). https://doi.org/10.1016/j.future.2019.12.030

    Article  Google Scholar 

  5. Cuka, M., Elmazi, D., Ikeda, M., Matsuo, K., Barolli, L.: IoT node selection in opportunistic networks: implementation of fuzzy-based simulation systems and testbed. Internet Things 8, 100105 (2019)

    Article  Google Scholar 

  6. Gusikhin, O., Filev, D., Rychtyckyj, N.: Intelligent vehicle systems: applications and new trends. In: Informatics in Control Automation and Robotics, pp. 3–14. Springer (2008). https://doi.org/10.1007/978-3-540-79142-31

  7. Hartenstein, H., Laberteaux, L.: A tutorial survey on vehicular ad hoc networks. IEEE Commun. Mag. 46(6), 164–171 (2008)

    Article  Google Scholar 

  8. Kandel, A.: Fuzzy Expert Systems. CRC Press, Boca Raton (1991)

    MATH  Google Scholar 

  9. Klir, G.J., Folger, T.A.: Fuzzy Sets, Uncertainty, and Information. Prentice Hall Inc., Upper Saddle River (1987)

    MATH  Google Scholar 

  10. Matsuo, K., Cuka, M., Inaba, T., Oda, T., Barolli, L., Barolli, A.: Performance analysis of two WMN architectures by WMN-GA simulation system considering different distributions and transmission rates. Int. J. Grid Util. Comput. 9(1), 75–82 (2018)

    Article  Google Scholar 

  11. McNeill, F.M., Thro, E.: Fuzzy Logic: A Practical Approach. Academic Press, Cambridge (1994)

    MATH  Google Scholar 

  12. Munakata, T., Jani, Y.: Fuzzy systems: an overview. Commun. ACM 37(3), 69–77 (1994). https://doi.org/10.1145/175247.175254

    Article  Google Scholar 

  13. Ozera, K., Bylykbashi, K., Liu, Y., Barolli, L.: A fuzzy-based approach for cluster management in VANETs: performance evaluation for two fuzzy-based systems. Internet Things 3, 120–133 (2018)

    Article  Google Scholar 

  14. Ozera, K., Inaba, T., Bylykbashi, K., Sakamoto, S., Ikeda, M., Barolli, L.: A wlan triage testbed based on fuzzy logic and its performance evaluation for different number of clients and throughput parameter. Int. J. Grid Util. Comput. 10(2), 168–178 (2019)

    Article  Google Scholar 

  15. Qafzezi, E., Bylykbashi, K., Ikeda, M., Matsuo, K., Barolli, L.: Coordination and management of cloud, fog and edge resources in SDN-VANETs using fuzzy logic: a comparison study for two fuzzy-based systems. Internet Things 11, 100169 (2020)

    Article  Google Scholar 

  16. SAE On-Road Automated Driving (ORAD) Committee: Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Technical report, Society of Automotive Engineers (SAE) (2018). https://doi.org/10.4271/J3016201806

  17. Zadeh, L.A., Kacprzyk, J.: Fuzzy Logic for the Management of Uncertainty. Wiley, New York (1992)

    Google Scholar 

  18. Zimmermann, H.J.: Fuzzy Set Theory and Its Applications. Springer, New York (1996). https://doi.org/10.1007/978-94-015-8702-0

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Bylykbashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bylykbashi, K., Qafzezi, E., Ikeda, M., Matsuo, K., Barolli, L., Takizawa, M. (2021). A Fuzzy-Based Simulation System for Driving Risk Management in VANETs Considering Weather Condition as a New Parameter. In: Barolli, L., Poniszewska-Maranda, A., Park, H. (eds) Innovative Mobile and Internet Services in Ubiquitous Computing . IMIS 2020. Advances in Intelligent Systems and Computing, vol 1195. Springer, Cham. https://doi.org/10.1007/978-3-030-50399-4_3

Download citation

Publish with us

Policies and ethics