Abstract
An annulus is basically a ring-shaped region between two concentric disks on the same plane. However, it can be defined on any other geometrical shapes, for example, a rectangular annulus is defined as the area between two rectangles with one rectangle enclosing the other. The area of the annulus is the area of the region between the two shapes. An axis-parallel rectangular annulus is an annulus where the sides of the rectangles are parallel to the co-ordinate axes. This paper presents a combinatorial technique to find the largest empty axis-parallel rectangular annulus from a given set of n points and runs in \(O(n\log n)\) time. It uses two balanced binary search trees to store the points and reduces the complexity of the existing algorithm in the literature.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bae, S.W.: Computing a minimum-width square annulus in arbitrary orientation. In: Kaykobad, M., Petreschi, R. (eds.) International Workshop on Algorithms and Computation WALCOM, pp. 131–142. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30139-6_11
Bae, S.W.: Computing a minimum-width square or rectangular annulus with outliers. Comput. Geom. 76, 33–45 (2019)
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer-Verlag, Heidelberg (1997). https://doi.org/10.1007/978-3-540-77974-2
DÃaz-Báñez, J.M., Hurtado, F., Meijer, H., Rappaport, D., Sellares, T.: The largest empty annulus problem. In: Sloot, P.M.A., Hoekstra, A.G., Tan, C.J.K., Dongarra, J.J. (eds.) ICCS 2002. LNCS, vol. 2331, pp. 46–54. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47789-6_5
Mahapatra, P.R.S.: Largest empty axis-parallel rectangular annulus. J. Emerg. Trends Comput. Inform. Sci. 3(6) (2012)
Mukherjee, J., Mahapatra, P.R.S., Karmakar, A., Das, S.: Minimum-width rectangular annulus. Theoret. Comput. Sci. 508, 74–80 (2013). http://www.sciencedirect.com/science/article/pii/S0304397512001934. Frontiers of Algorithmics
Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer-Verlag, Heidelberg (1985). https://doi.org/10.1007/978-1-4612-1098-6
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Paul, R., Sarkar, A., Biswas, A. (2020). Finding the Maximum Empty Axis-Parallel Rectangular Annulus. In: Lukić, T., Barneva, R., Brimkov, V., Čomić, L., Sladoje, N. (eds) Combinatorial Image Analysis. IWCIA 2020. Lecture Notes in Computer Science(), vol 12148. Springer, Cham. https://doi.org/10.1007/978-3-030-51002-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-51002-2_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-51001-5
Online ISBN: 978-3-030-51002-2
eBook Packages: Computer ScienceComputer Science (R0)