Abstract
Natural language processing (NLP) is a well-known sub-field of artificial intelligence that is having huge success and attention in recent years, its applications are also exploding in terms of innovation and consumer adoption, personal voice assistants and chatbots are two examples among many others, despite this recent success, NLP still has huge challenges and open issues. In this paper, we provide a short overview of NLP, then we dive into the different challenges that are facing it, finally, we conclude by presenting recent trends and future research directions that are speculated by the research community.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdul-Mageed, M., Ungar, L.H.: EmoNet: fine-grained emotion detection with gated recurrent neural networks. In: ACL (2017)
Agić, Ž., Vulić, I.: JW300: a wide-coverage parallel corpus for low-resource languages. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 3204–3210. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1310
Amac, M.S., Yagcioglu, S., Erdem, A., Erdem, E.: Procedural reasoning networks for understanding multimodal procedures (2019)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), 1–46 (2015). https://doi.org/10.1371/journal.pone.0130140
Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Mueller, K.R.: How to explain individual classification decisions (2009)
Chevalier-Boisvert, M., Bahdanau, D., Lahlou, S., Willems, L., Saharia, C., Nguyen, T.H., Bengio, Y.: BabyAI: a platform to study the sample efficiency of grounded language learning (2018)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding (2018)
Duong, L., Hoang, V.C.D., Pham, T.Q., Hong, Y.H., Dovgalecs, V., Bashkansky, G., Black, J., Bleeker, A., Huitouze, S.L., Johnson, M.: An adaptable task-oriented dialog system for stand-alone embedded devices. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, Florence, Italy, July 2019, pp. 49–57. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-3009
Dvorak, A., Novak, V.: Formalization of commonsense reasoning in fuzzy logic in broader sense. Appl. Comput. Math. 10, 106–121 (2011)
Geva, M., Goldberg, Y., Berant, J.: Are we modeling the task or the annotator? an investigation of annotator bias in natural language understanding datasets (2019)
Gu, J., Hassan, H., Devlin, J., Li, V.O.: Universal neural machine translation for extremely low resource languages. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, June 2018, pp. 344–354. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/N18-1032
Gu, J., Wang, Y., Chen, Y., Li, V.O.K., Cho, K.: Meta-learning for low-resource neural machine translation. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October—November 2018, pp. 3622–3631. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/D18-1398
Guo, C., Cao, J., Zhang, X., Shu, K., Liu, H.: DEAN: learning dual emotion for fake news detection on social media (2019)
Gururangan, S., Swayamdipta, S., Levy, O., Schwartz, R., Bowman, S., Smith, N.A.: Annotation artifacts in natural language inference data. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New Orleans, Louisiana, June 2018, pp. 107–112. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/N18-2017
Jiang, C., Yu, H.F., Hsieh, C.J., Chang, K.W.: Learning word embeddings for low-resource languages by PU learning. In: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana, June 2018, pp. 1024–1034. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/N18-1093
Kordjamshidi, P., Rahgooy, T., Manzoor, U.: Spatial language understanding with multimodal graphs using declarative learning based programming. In: Proceedings of the 2nd Workshop on Structured Prediction for Natural Language Processing, Copenhagen, Denmark, September 2017, pp. 33–43. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/W17-4306
Lample, G., Charton, F.: Deep learning for symbolic mathematics (2019)
Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., Soricut, R.: ALBERT: A lite BERT for self-supervised learning of language representations (2019)
Liu, C.W., Lowe, R., Serban, I., Noseworthy, M., Charlin, L., Pineau, J.: How NOT to evaluate your dialogue system: an empirical study of unsupervised evaluation metrics for dialogue response generation. In: Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas, November 2016, pp. 2122–2132. Association for Computational Linguistics (2016). https://doi.org/10.18653/v1/D16-1230
Liu, H., Yin, Q., Wang, W.Y.: Towards explainable NLP: a generative explanation framework for text classification. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 5570–5581. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1560
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., Stoyanov, V.: RoBERTa: a robustly optimized BERT pretraining approach (2019)
McCoy, T., Pavlick, E., Linzen, T.: Right for the wrong reasons: diagnosing syntactic heuristics in natural language inference. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 3428–3448. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1334
Murinová, P., Novák, V.: A formal theory of generalized intermediate syllogisms. Fuzzy Sets Syst. 186(1), 47–80 (2012). https://doi.org/10.1016/j.fss.2011.07.004
Murinová, P., Novák, V.: Analysis of generalized square of opposition with intermediate quantifiers. Fuzzy Sets Syst. 242, 89–113 (2014). https://doi.org/10.1016/j.fss.2013.05.006
Nie, Y., Williams, A., Dinan, E., Bansal, M., Weston, J., Kiela, D.: Adversarial NLI: a new benchmark for natural language understanding (2019)
Novák, V.: A comprehensive theory of trichotomous evaluative linguistic expressions. Fuzzy Sets Syst. 159(22), 2939–2969 (2008). https://doi.org/10.1016/j.fss.2008.02.023
Novikova, J., Dušek, O., Cercas Curry, A., Rieser, V.: Why we need new evaluation metrics for NLG. In: Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, Copenhagen, Denmark, September 2017, pp. 2241–2252. Association for Computational Linguistics (2017). https://doi.org/10.18653/v1/D17-1238
Novák, V.: Linguistic characterization of time series. Fuzzy Sets Syst. 285, 52–72 (2016). https://doi.org/10.1016/j.fss.2015.07.017
Peyrard, M.: Studying summarization evaluation metrics in the appropriate scoring range. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 5093–5100. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1502
Poliak, A., Naradowsky, J., Haldar, A., Rudinger, R., Durme, B.V.: Hypothesis only baselines in natural language inference (2018)
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.: Language models are unsupervised multitask learners (2019)
Rashkin, H., Smith, E.M., Li, M., Boureau, Y.L.: Towards empathetic open-domain conversation models: a new benchmark and dataset. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, Florence, Italy, July 2019, pp. 5370–5381. Association for Computational Linguistics (2019). https://doi.org/10.18653/v1/P19-1534
Şahin, G.G., Steedman, M.: Data augmentation via dependency tree morphing for low-resource languages. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium, October–November 2018, pp. 5004–5009. Association for Computational Linguistics (2018). https://doi.org/10.18653/v1/D18-1545
Sanabria, R., Caglayan, O., Palaskar, S., Elliott, D., Barrault, L., Specia, L., Metze, F.: How2: A large-scale dataset for multimodal language understanding (2018)
Seyeditabari, A., Tabari, N., Gholizadeh, S., Zadrozny, W.: Emotion detection in text: focusing on latent representation (2019)
Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps (2013)
Srivastava, Y., Murali, V., Dubey, S.R., Mukherjee, S.: Visual question answering using deep learning: a survey and performance analysis (2019)
Sun, Y., Wang, S., Li, Y., Feng, S., Tian, H., Wu, H., Wang, H.: Ernie 2.0: a continual pre-training framework for language understanding (2019)
Wang, Y., Yao, Q., Kwok, J., Ni, L.M.: Generalizing from a few examples: a survey on few-shot learning (2019)
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R., Le, Q.V.: XLNet: generalized autoregressive pretraining for language understanding (2019)
Young, T., Hazarika, D., Poria, S., Cambria, E.: Recent trends in deep learning based natural language processing [review article]. IEEE Comput. Intell. Mag. 13(3), 55–75 (2018). https://doi.org/10.1109/MCI.2018.2840738. cited By 209
Yu, Z., Cui, Y., Yu, J., Tao, D., Tian, Q.: Multimodal unified attention networks for vision-and-language interactions (2019)
Zhang, Y., Yang, Q.: A survey on multi-task learning (2017)
Zhang, Z., Han, X., Liu, Z., Jiang, X., Sun, M., Liu, Q.: ERNIE: enhanced language representation with informative entities (2019)
Zhong, P., Wang, D., Miao, C.: Knowledge-enriched transformer for emotion detection in textual conversations (2019)
Zhou, X., Zhang, Y., Cui, L., Huang, D.: Evaluating commonsense in pre-trained language models (2019)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Kaddari, Z., Mellah, Y., Berrich, J., Belkasmi, M.G., Bouchentouf, T. (2021). Natural Language Processing: Challenges and Future Directions. In: Masrour, T., El Hassani, I., Cherrafi, A. (eds) Artificial Intelligence and Industrial Applications. A2IA 2020. Lecture Notes in Networks and Systems, vol 144. Springer, Cham. https://doi.org/10.1007/978-3-030-53970-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-53970-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-53969-6
Online ISBN: 978-3-030-53970-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)