Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Lower Bounds for Non-elitist Evolutionary Algorithms via Negative Multiplicative Drift

  • Conference paper
  • First Online:
Parallel Problem Solving from Nature – PPSN XVI (PPSN 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12270))

Included in the following conference series:

Abstract

A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems – general results which translate an expected progress away from the target into a high hitting time.

We propose a simple negative drift theorem for multiplicative drift scenarios and show that it can simplify existing analyses. We discuss in more detail Lehre’s (PPSN 2010) negative drift in populations method, one of the most general tools to prove lower bounds on the runtime of non-elitist mutation-based evolutionary algorithms for discrete search spaces. Together with other arguments, we obtain an alternative and simpler proof, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a \((1 - \omega (n^{-1/2}))\) factor below the threshold. As one particular result, we apply this method and a novel domination argument to show an exponential lower bound for the runtime of the mutation-only simple GA on OneMax for arbitrary population size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the \({(\mu +\lambda )}\) EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1459–1466. ACM (2018)

    Google Scholar 

  2. Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \({(\mu ,\lambda )}\) EA. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1461–1469. ACM (2019)

    Google Scholar 

  3. Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern. Part B 39, 1092–1106 (2009)

    Article  Google Scholar 

  4. Corus, D., Dang, D., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22, 707–719 (2018)

    Article  Google Scholar 

  5. Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to partial information. Algorithmica 75, 428–461 (2016)

    Article  MathSciNet  Google Scholar 

  6. Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_75

    Chapter  Google Scholar 

  7. Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theoret. Comput. Sci. 773, 115–137 (2019)

    Article  MathSciNet  Google Scholar 

  8. Doerr, B.: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 25–33. ACM (2019)

    Google Scholar 

  9. Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and Evolutionary Computation Conference, GECCO 2020. ACM (2020, to appear)

    Google Scholar 

  10. Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative multiplicative drift. CoRR abs/2004.01274 (2020)

    Google Scholar 

  11. Doerr, B.: Runtime analysis of evolutionary algorithms via symmetry arguments. CoRR abs/2006.04663 (2020)

    Google Scholar 

  12. Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)

    Article  MathSciNet  Google Scholar 

  13. Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)

    Article  MathSciNet  Google Scholar 

  14. Doerr, B., Kötzing, T.: Multiplicative up-drift. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1470–1478. ACM (2019)

    Google Scholar 

  15. Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 247–254. ACM (2009)

    Google Scholar 

  16. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)

    Article  MathSciNet  Google Scholar 

  17. Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13, 502–525 (1982)

    Article  MathSciNet  Google Scholar 

  18. Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)

    Google Scholar 

  19. He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)

    Article  MathSciNet  Google Scholar 

  20. Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 41–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_5

    Chapter  Google Scholar 

  21. Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: Foundations of Computational Intelligence, FOCI 2007, pp. 25–32. IEEE (2007)

    Google Scholar 

  22. Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Universität des Saarlandes (2010)

    Google Scholar 

  23. Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica 75, 490–506 (2016)

    Article  MathSciNet  Google Scholar 

  24. Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_25

    Chapter  Google Scholar 

  25. Lehre, P.K.: Fitness-levels for non-elitist populations. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 2075–2082. ACM (2011)

    Google Scholar 

  26. Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 89–131. Springer, Cham (2020). https://arxiv.org/abs/1712.00964

  27. Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27, 643–666 (2018)

    Article  MathSciNet  Google Scholar 

  28. Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)

    Article  MathSciNet  Google Scholar 

  29. Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 835–842. ACM (2009)

    Google Scholar 

  30. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_9

    Chapter  Google Scholar 

  31. Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59, 369–386 (2011)

    Article  MathSciNet  Google Scholar 

  32. Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds in evolutionary computation. CoRR abs/1211.7184 (2012)

    Google Scholar 

  33. Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm. Theoret. Comput. Sci. 545, 2–19 (2014)

    Article  MathSciNet  Google Scholar 

  34. Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)

    Article  MathSciNet  Google Scholar 

  35. Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)

    Article  MathSciNet  Google Scholar 

  36. Sutton, A.M., Witt, C.: Lower bounds on the runtime of crossover-based algorithms via decoupling and family graphs. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1515–1522. ACM (2019)

    Google Scholar 

  37. Witt, C.: Runtime analysis of the (\(\mu \) + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14, 65–86 (2006)

    Google Scholar 

  38. Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)

    Article  MathSciNet  Google Scholar 

  39. Witt, C.: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax. Algorithmica 81, 632–667 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Doerr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Doerr, B. (2020). Lower Bounds for Non-elitist Evolutionary Algorithms via Negative Multiplicative Drift. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58115-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58114-5

  • Online ISBN: 978-3-030-58115-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics