Abstract
A decent number of lower bounds for non-elitist population-based evolutionary algorithms has been shown by now. Most of them are technically demanding due to the (hard to avoid) use of negative drift theorems – general results which translate an expected progress away from the target into a high hitting time.
We propose a simple negative drift theorem for multiplicative drift scenarios and show that it can simplify existing analyses. We discuss in more detail Lehre’s (PPSN 2010) negative drift in populations method, one of the most general tools to prove lower bounds on the runtime of non-elitist mutation-based evolutionary algorithms for discrete search spaces. Together with other arguments, we obtain an alternative and simpler proof, which also strengthens and simplifies this method. In particular, now only three of the five technical conditions of the previous result have to be verified. The lower bounds we obtain are explicit instead of only asymptotic. This allows to compute concrete lower bounds for concrete algorithms, but also enables us to show that super-polynomial runtimes appear already when the reproduction rate is only a \((1 - \omega (n^{-1/2}))\) factor below the threshold. As one particular result, we apply this method and a novel domination argument to show an exponential lower bound for the runtime of the mutation-only simple GA on OneMax for arbitrary population size.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Antipov, D., Doerr, B., Fang, J., Hetet, T.: Runtime analysis for the \({(\mu +\lambda )}\) EA optimizing OneMax. In: Genetic and Evolutionary Computation Conference, GECCO 2018, pp. 1459–1466. ACM (2018)
Antipov, D., Doerr, B., Yang, Q.: The efficiency threshold for the offspring population size of the \({(\mu ,\lambda )}\) EA. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1461–1469. ACM (2019)
Chen, T., He, J., Sun, G., Chen, G., Yao, X.: A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. IEEE Trans. Syst. Man Cybern. Part B 39, 1092–1106 (2009)
Corus, D., Dang, D., Eremeev, A.V., Lehre, P.K.: Level-based analysis of genetic algorithms and other search processes. IEEE Trans. Evol. Comput. 22, 707–719 (2018)
Dang, D., Lehre, P.K.: Runtime analysis of non-elitist populations: from classical optimisation to partial information. Algorithmica 75, 428–461 (2016)
Dang, D.-C., Lehre, P.K.: Self-adaptation of mutation rates in non-elitist populations. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 803–813. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_75
Doerr, B.: Analyzing randomized search heuristics via stochastic domination. Theoret. Comput. Sci. 773, 115–137 (2019)
Doerr, B.: An exponential lower bound for the runtime of the compact genetic algorithm on jump functions. In: Foundations of Genetic Algorithms, FOGA 2019, pp. 25–33. ACM (2019)
Doerr, B.: Does comma selection help to cope with local optima? In: Genetic and Evolutionary Computation Conference, GECCO 2020. ACM (2020, to appear)
Doerr, B.: Lower bounds for non-elitist evolutionary algorithms via negative multiplicative drift. CoRR abs/2004.01274 (2020)
Doerr, B.: Runtime analysis of evolutionary algorithms via symmetry arguments. CoRR abs/2006.04663 (2020)
Doerr, B., Goldberg, L.A.: Adaptive drift analysis. Algorithmica 65, 224–250 (2013)
Doerr, B., Johannsen, D., Winzen, C.: Multiplicative drift analysis. Algorithmica 64, 673–697 (2012)
Doerr, B., Kötzing, T.: Multiplicative up-drift. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1470–1478. ACM (2019)
Doerr, B., Theile, M.: Improved analysis methods for crossover-based algorithms. In: Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 247–254. ACM (2009)
Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theoret. Comput. Sci. 276, 51–81 (2002)
Hajek, B.: Hitting-time and occupation-time bounds implied by drift analysis with applications. Adv. Appl. Probab. 13, 502–525 (1982)
Happ, E., Johannsen, D., Klein, C., Neumann, F.: Rigorous analyses of fitness-proportional selection for optimizing linear functions. In: Genetic and Evolutionary Computation Conference, GECCO 2008, pp. 953–960. ACM (2008)
He, J., Yao, X.: Drift analysis and average time complexity of evolutionary algorithms. Artif. Intell. 127, 51–81 (2001)
Jägersküpper, J.: A blend of Markov-chain and drift analysis. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 41–51. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_5
Jägersküpper, J., Storch, T.: When the plus strategy outperforms the comma strategy and when not. In: Foundations of Computational Intelligence, FOCI 2007, pp. 25–32. IEEE (2007)
Johannsen, D.: Random combinatorial structures and randomized search heuristics. Ph.D. thesis, Universität des Saarlandes (2010)
Kötzing, T.: Concentration of first hitting times under additive drift. Algorithmica 75, 490–506 (2016)
Lehre, P.K.: Negative drift in populations. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6238, pp. 244–253. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15844-5_25
Lehre, P.K.: Fitness-levels for non-elitist populations. In: Genetic and Evolutionary Computation Conference, GECCO 2011, pp. 2075–2082. ACM (2011)
Lengler, J.: Drift analysis. In: Doerr, B., Neumann, F. (eds.) Theory of Evolutionary Computation: Recent Developments in Discrete Optimization, pp. 89–131. Springer, Cham (2020). https://arxiv.org/abs/1712.00964
Lengler, J., Steger, A.: Drift analysis and evolutionary algorithms revisited. Comb. Probab. Comput. 27, 643–666 (2018)
Mitavskiy, B., Rowe, J.E., Cannings, C.: Theoretical analysis of local search strategies to optimize network communication subject to preserving the total number of links. Int. J. Intell. Comput. Cybern. 2, 243–284 (2009)
Neumann, F., Oliveto, P.S., Witt, C.: Theoretical analysis of fitness-proportional selection: landscapes and efficiency. In: Genetic and Evolutionary Computation Conference, GECCO 2009, pp. 835–842. ACM (2009)
Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. In: Rudolph, G., Jansen, T., Beume, N., Lucas, S., Poloni, C. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 82–91. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87700-4_9
Oliveto, P.S., Witt, C.: Simplified drift analysis for proving lower bounds in evolutionary computation. Algorithmica 59, 369–386 (2011)
Oliveto, P.S., Witt, C.: Erratum: simplified drift analysis for proving lower bounds in evolutionary computation. CoRR abs/1211.7184 (2012)
Oliveto, P.S., Witt, C.: On the runtime analysis of the simple genetic algorithm. Theoret. Comput. Sci. 545, 2–19 (2014)
Oliveto, P.S., Witt, C.: Improved time complexity analysis of the simple genetic algorithm. Theoret. Comput. Sci. 605, 21–41 (2015)
Rowe, J.E., Sudholt, D.: The choice of the offspring population size in the (1, \(\lambda \)) evolutionary algorithm. Theoret. Comput. Sci. 545, 20–38 (2014)
Sutton, A.M., Witt, C.: Lower bounds on the runtime of crossover-based algorithms via decoupling and family graphs. In: Genetic and Evolutionary Computation Conference, GECCO 2019, pp. 1515–1522. ACM (2019)
Witt, C.: Runtime analysis of the (\(\mu \) + 1) EA on simple pseudo-Boolean functions. Evol. Comput. 14, 65–86 (2006)
Witt, C.: Tight bounds on the optimization time of a randomized search heuristic on linear functions. Comb. Probab. Comput. 22, 294–318 (2013)
Witt, C.: Upper bounds on the running time of the univariate marginal distribution algorithm on OneMax. Algorithmica 81, 632–667 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Doerr, B. (2020). Lower Bounds for Non-elitist Evolutionary Algorithms via Negative Multiplicative Drift. In: Bäck, T., et al. Parallel Problem Solving from Nature – PPSN XVI. PPSN 2020. Lecture Notes in Computer Science(), vol 12270. Springer, Cham. https://doi.org/10.1007/978-3-030-58115-2_42
Download citation
DOI: https://doi.org/10.1007/978-3-030-58115-2_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-58114-5
Online ISBN: 978-3-030-58115-2
eBook Packages: Computer ScienceComputer Science (R0)