Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

From Statistical Model Checking to Run-Time Monitoring Using a Bayesian Network Approach

  • Conference paper
  • First Online:
Runtime Verification (RV 2020)

Abstract

We propose a framework for monitoring and updating, at run-time, the probabilities of temporal properties of stochastic timed automata. Our method is based on Bayesian networks and can be useful in various real-time applications, such as flight control systems and cardiac pacemakers. The framework has been implemented by exploiting the statistical model checking engine of . By run-time monitoring a set of interesting temporal properties of a given stochastic automaton we update their probabilities, modeled through a Bayesian Network. The main advantages of our method are the capacity to discover non-trivial dependencies between properties and to efficiently update probabilities of unobserved properties given real-time observations. We present empirical results on three application scenarios, showing that the query time can keep up with the speed of some realistic real-time applications. We also present experiments demonstrating that the Bayesian Network approach performance-wise enables run-time monitoring while maintaining or even increasing the accuracy of probability estimation compared to statistical model checking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    All the experiments ran on an Apple MacBook Pro Mid 2015, 2.5 GHz Quad-Core Intel Core i7, with 16 GB of RAM and only one core has been used.

References

  1. Aceto, L., Bouyer, P., Burgueño, A., Larsen, K.G.: The power of reachability testing for timed automata. In: Arvind, V., Ramanujam, S. (eds.) FSTTCS 1998. LNCS, vol. 1530, pp. 245–256. Springer, Heidelberg (1998). https://doi.org/10.1007/978-3-540-49382-2_22

    Chapter  Google Scholar 

  2. AlTurki, M., Meseguer, J.: PVeStA: a parallel statistical model checking and quantitative analysis tool. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 386–392. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_28

    Chapter  Google Scholar 

  3. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  4. Alur, R., Giacobbe, M., Henzinger, T.A., Larsen, K.G., Mikučionis, M.: Continuous-time models for system design and analysis. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 452–477. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_22

    Chapter  Google Scholar 

  5. Bulychev, P., et al.: UPPAAL-SMC: statistical model checking for priced timed automata. arXiv preprint arXiv:1207.1272 (2012)

  6. Bulychev, P., David, A., Larsen, K.G., Legay, A., Li, G., Poulsen, D.B.: Rewrite-based statistical model checking of WMTL. In: Qadeer, S., Tasiran, S. (eds.) RV 2012. LNCS, vol. 7687, pp. 260–275. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35632-2_25

    Chapter  Google Scholar 

  7. Chickering, D.M., Heckerman, D., Meek, C.: Large-sample learning of Bayesian networks is np-hard. J. Mach. Learn. Res. 5(Oct), 1287–1330 (2004)

    MathSciNet  MATH  Google Scholar 

  8. Chickering, D.M., Meek, C.: Finding optimal Bayesian networks. In: Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, pp. 94–102 (2002)

    Google Scholar 

  9. David, A., Jensen, P.G., Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Uppaal stratego. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 206–211. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_16

    Chapter  Google Scholar 

  10. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

    Article  Google Scholar 

  11. David, A., et al.: Statistical model checking for networks of priced timed automata. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 80–96. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_7

    Chapter  Google Scholar 

  12. David, A., Larsen, K.G., Legay, A., Mikučionis, M., Wang, Z.: Time for statistical model checking of real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 349–355. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_27

    Chapter  Google Scholar 

  13. Feng, Y., Katoen, J.-P., Li, H., Xia, B., Zhan, N.: Monitoring CTMCs by multi-clock timed automata. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 507–526. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_27

    Chapter  Google Scholar 

  14. Jegourel, C., Legay, A., Sedwards, S.: A platform for high performance statistical model checking – PLASMA. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 498–503. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_37

    Chapter  MATH  Google Scholar 

  15. Jiang, Z., Pajic, M., Moarref, S., Alur, R., Mangharam, R.: Modeling and verification of a dual chamber implantable pacemaker. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 188–203. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5_14

    Chapter  Google Scholar 

  16. Kalajdzic, K., Bartocci, E., Smolka, S.A., Stoller, S.D., Grosu, R.: Runtime verification with particle filtering. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 149–166. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40787-1_9

    Chapter  Google Scholar 

  17. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  18. Larsen, K.G., Mikučionis, M., Taankvist, J.H.: Safe and optimal adaptive cruise control. In: Meyer, R., Platzer, A., Wehrheim, H. (eds.) Correct System Design. LNCS, vol. 9360, pp. 260–277. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23506-6_17

    Chapter  Google Scholar 

  19. Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a nutshell. Int. J. Softw. Tools Technol. Transf. 1(1–2), 134–152 (1997). https://doi.org/10.1007/s100090050010

    Article  MATH  Google Scholar 

  20. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall Press, New York (2009)

    MATH  Google Scholar 

  21. Schwarz, G., et al.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978)

    Article  MathSciNet  Google Scholar 

  22. Taskesen, E.: bnlearn (2019). https://github.com/erdogant/bnlearn

  23. Wu, X., Ling, H., Dong, Y.: On modeling and verifying of application protocols of TTCAN in flight-control system with UPPAAL. In: 2009 International Conference on Embedded Software and Systems, pp. 572–577. IEEE (2009)

    Google Scholar 

  24. Zhang, N.L., Poole, D.: A simple approach to Bayesian network computations. In: Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence, pp. 171–178. Canadian Information Processing Society (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tibo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaeger, M., Larsen, K.G., Tibo, A. (2020). From Statistical Model Checking to Run-Time Monitoring Using a Bayesian Network Approach. In: Deshmukh, J., Ničković, D. (eds) Runtime Verification. RV 2020. Lecture Notes in Computer Science(), vol 12399. Springer, Cham. https://doi.org/10.1007/978-3-030-60508-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60508-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60507-0

  • Online ISBN: 978-3-030-60508-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics