Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Using Kullback-Leibler Divergence to Identify Prominent Sensor Data for Fault Diagnosis

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

The combination of machine learning techniques and signal analysis is a well-known solution for the fault diagnosis of industrial equipment. Efficient maintenance management, safer operation, and economic gains are three examples of benefits achieved by using this combination to monitor the equipment condition. In this context, the selection of meaningful information to train machine learning models arises as an important issue, since it influences the model accuracy and complexity. Aware of this, we propose to use the ratio between the interclass and intraclass Kullback-Leibler divergence to identify promising data for training fault diagnosis models. We assessed the performance of this metric on compressor fault datasets. The results suggested a relation between the model accuracy and the ratio between the average interclass and intraclass divergences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbas, S.M., Singh, S.N.: Region-based object detection and classification using faster R-CNN. In: 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–6. IEEE (2018)

    Google Scholar 

  2. Aggarwal, Charu C.: Neural Networks and Deep Learning. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94463-0

    Book  MATH  Google Scholar 

  3. Back, A.D., Trappenberg, T.P.: Input variable selection using independent component analysis. In: IJCNN 1999. International Joint Conference on Neural Networks. Proceedings (Cat. No. 99CH36339), vol. 2, pp. 989–992. IEEE (1999)

    Google Scholar 

  4. Cabrera, D., et al.: Bayesian approach and time series dimensionality reduction to lstm-based model-building for fault diagnosis of a reciprocating compressor. Neurocomputing 380, 51–66 (2020)

    Article  Google Scholar 

  5. Chinniah, Y.: Analysis and prevention of serious and fatal accidents related to moving parts of machinery. Safety Sci. 75, 163–173 (2015)

    Article  Google Scholar 

  6. Eriksson, D., Frisk, E., Krysander, M.: A method for quantitative fault diagnosability analysis of stochastic linear descriptor models. Automatica 49(6), 1591–1600 (2013)

    Article  MathSciNet  Google Scholar 

  7. Géron, A.: Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media, Inc., Newton (2017)

    Google Scholar 

  8. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT press Cambridge (2016)

    Google Scholar 

  9. Hashemian, H.M.: State-of-the-art predictive maintenance techniques. IEEE Trans. Instrument. Meas. 60(1), 226–236 (2010)

    Article  MathSciNet  Google Scholar 

  10. He, J., Yang, S., Papatheou, E., Xiong, X., Wan, H., Gu, X.: Investigation of a multi-sensor data fusion technique for the fault diagnosis of gearboxes. Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci. 233(13), 4764–4775 (2019)

    Article  Google Scholar 

  11. Islam, Q.N.: Mastering PyCharm. Packt Publishing Ltd., Birmingham (2015)

    Google Scholar 

  12. Jiang, G., He, H., Xie, P., Tang, Y.: Stacked multilevel-denoising autoencoders: a new representation learning approach for wind turbine gearbox fault diagnosis. IEEE Trans. Instrument. Meas. 66(9), 2391–2402 (2017)

    Article  Google Scholar 

  13. Kullback, S.: Information theory and statistics. Courier Corporation (1997)

    Google Scholar 

  14. Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22(1), 79–86 (1951)

    Article  MathSciNet  Google Scholar 

  15. Liu, R., Yang, B., Zio, E., Chen, X.: Artificial intelligence for fault diagnosis of rotating machinery: a review. Mech. Syst. Signal Process. 108, 33–47 (2018)

    Article  Google Scholar 

  16. Mohammed, M., Khan, M.B., Bashier, E.B.M.: Machine Learning: Algorithms and Applications. CRC Press, Boca Raton (2016)

    Book  Google Scholar 

  17. Monteiro, R.P., Bastos-Filho, C.J.: Detecting defects in sanitary wares using deep learning. In: 2019 IEEE Latin American Conference on Computational Intelligence (LA-CCI), pp. 1–6. IEEE (2019)

    Google Scholar 

  18. Monteiro, R.P., Cerrada, M., Cabrera, D.R., Sánchez, R.V., Bastos-Filho, C.J.: Using a support vector machine based decision stage to improve the fault diagnosis on gearboxes. Comput. Intell. Neurosci. 2019, (2019)

    Google Scholar 

  19. Moran, M.B., et al.: Identification of thyroid nodules in infrared images by convolutional neural networks. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2018)

    Google Scholar 

  20. Rao, K.R., Kim, D.N., Hwang, J.J.: Fast Fourier transform-algorithms and applications. Springer, Heidelberg (2011). https://doi.org/10.1007/978-1-4020-6629-0

  21. Rawat, W., Wang, Z.: Deep convolutional neural networks for image classification: a comprehensive review. Neural Comput. 29(9), 2352–2449 (2017)

    Article  MathSciNet  Google Scholar 

  22. Sharkey, A.J., Chandroth, G.O., Sharkey, N.E.: Acoustic emission, cylinder pressure and vibration: a multisensor approach to robust fault diagnosis. In: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium, vol. 6, pp. 223–228. IEEE (2000)

    Google Scholar 

  23. VanRossum, G., Drake, F.L.: The python Language Reference. Python Software Foundation, Amsterdam (2010)

    Google Scholar 

Download references

Acknowledgments

This study was financed in part by the Coordenaçǎo de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rodrigo P. Monteiro or Carmelo J. A. Bastos-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Monteiro, R.P., Bastos-Filho, C.J.A. (2020). Using Kullback-Leibler Divergence to Identify Prominent Sensor Data for Fault Diagnosis. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62362-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62361-6

  • Online ISBN: 978-3-030-62362-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics