Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Closure Coefficient in Complex Directed Networks

  • Conference paper
  • First Online:
Complex Networks & Their Applications IX (COMPLEX NETWORKS 2020 2020)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 943))

Included in the following conference series:

Abstract

The 3-clique formation, a natural phenomenon in real-world networks, is typically measured by the local clustering coefficient, where the focal node serves as the centre-node in an open triad. The local closure coefficient provides a novel perspective, with the focal node serving as the end-node. It has shown some interesting properties in network analysis, yet it cannot be applied to complex directed networks. Here, we propose the directed closure coefficient as an extension of the closure coefficient in directed networks, and we extend it to weighted and signed networks. In order to better use it in network analysis, we introduce further the source closure coefficient and the target closure coefficient. Our experiments show that the proposed directed closure coefficient provides complementary information to the classic directed clustering coefficient. We also demonstrate that adding closure coefficients leads to better performance in link prediction task in most directed networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Newman, M.E.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  2. Barabási, A.-L., et al.: Network Science. Cambridge University Press, Cambridge (2016)

    MATH  Google Scholar 

  3. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298, 824–827 (2002)

    Article  Google Scholar 

  4. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  5. Solava, R.W., Michaels, R.P., Milenković, T.: Graphlet-based edge clustering reveals pathogen-interacting proteins. Bioinformatics 28, i480–i486 (2012)

    Article  Google Scholar 

  6. Noble, C.C., Cook, D.J.: Graph-based anomaly detection. In: KDD (2003)

    Google Scholar 

  7. LaFond, T., Neville, J., Gallagher, B.: Anomaly detection in networks with changing trends. In: ODD\(^2\) Workshop (2014)

    Google Scholar 

  8. Henderson, K., Gallagher, B., Eliassi-Rad, T., Tong, H., Basu, S., Akoglu, L., Koutra, D., Faloutsos, C., Li, L.: RolX: structural role extraction & mining in large graphs. In: KDD (2012)

    Google Scholar 

  9. Musial, K., Juszczyszyn, K.: Motif-based analysis of social position influence on interconnection patterns in complex social network. In: ACIIDS. IEEE (2009)

    Google Scholar 

  10. Schall, D.: Link prediction in directed social networks. Soc. Netw. Anal. Min. 4(1), 157 (2014)

    Article  Google Scholar 

  11. Juszczyszyn, K., Kazienko, P., Musiał, K.: Local topology of social network based on motif analysis. In: KES. Springer (2008)

    Google Scholar 

  12. Rapoport, A.: Spread of information through a population with socio-structural bias: I. Assumption of transitivity. Bull. Math. Biophys. 15, 523–533 (1953)

    Article  MathSciNet  Google Scholar 

  13. Wu, Z.-X., Holme, P.: Modeling scientific-citation patterns and other triangle-rich acyclic networks. Phys. Rev. E 80, 037101 (2009)

    Article  Google Scholar 

  14. Josang, A., Hayward, R.F., Pope, S.: Trust network analysis with subjective logic (2006)

    Google Scholar 

  15. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)

    MATH  Google Scholar 

  16. Onnela, J.-P., Saramäki, J., Kertész, J., Kaski, K.: Intensity and coherence of motifs in weighted complex networks. Phys. Rev. E 71, 065103 (2005)

    Article  Google Scholar 

  17. Zhang, B., Horvath, S.: A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. (2005)

    Google Scholar 

  18. Fagiolo, G.: Clustering in complex directed networks. Phys. Rev. E 76, 026107 (2007)

    Article  Google Scholar 

  19. Kunegis, J., Lommatzsch, A., Bauckhage, C.: The slashdot zoo: mining a social network with negative edges. In: WWW (2009)

    Google Scholar 

  20. Wang, J., Li, M., Wang, H., Pan, Y.: Identification of essential proteins based on edge clustering coefficient. TCBB 9, 1070–1080 (2011)

    Google Scholar 

  21. Yin, H., Benson, A.R., Leskovec, J.: The local closure coefficient: a new perspective on network clustering. In: WSDM (2019)

    Google Scholar 

  22. Moody, J.: Peer influence groups: identifying dense clusters in large networks. Soc. Netw. 23, 261–283 (2001)

    Article  Google Scholar 

  23. Hogg, T., Lerman, K.: Social dynamics of Digg. EPJ Data Sci. 1, 5 (2012)

    Article  Google Scholar 

  24. Kumar, S., Hooi, B., Makhija, D., Kumar, M., Faloutsos, C., Subrahmanian, V.: REV2: fraudulent user prediction in rating platforms. In: WSDM. ACM (2018)

    Google Scholar 

  25. Massa, P., Avesani, P.: Controversial users demand local trust metrics: an experimental study on Epinions.com community. In: AAAI (2005)

    Google Scholar 

  26. Leskovec, J., Huttenlocher, D., Kleinberg, J.: Predicting positive and negative links in online social networks. In: WWW (2010)

    Google Scholar 

  27. Panzarasa, P., Opsahl, T., Carley, K.M.: Patterns and dynamics of users’ behavior and interaction: network analysis of an online community. J. Am. Soc. Inf. Sci. Technol. 60, 911–932 (2009)

    Article  Google Scholar 

  28. Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1, 2 (2007)

    Article  Google Scholar 

  29. Hall, B.H., Adam, B.: 13 the NBER patent-citations data file: lessons, insights, and methodological tools. Patents, citations, and innovations: A window on the knowledge economy (2002)

    Google Scholar 

  30. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: WSDM (2017)

    Google Scholar 

  31. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans. Web (TWEB) 1, 5 (2007)

    Article  Google Scholar 

  32. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of community structure in large social and information networks. In: WWW (2008)

    Google Scholar 

  33. Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. J. Am. Soc. Inf. Sci. Technol. 58, 1019–1031 (2007)

    Article  Google Scholar 

  34. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Soc. Netw. 25, 211–230 (2003)

    Article  Google Scholar 

  35. Zhou, T., Lü, L., Zhang, Y.-C.: Predicting missing links via local information. Eur. Phys. J. B 71, 623–630 (2009)

    Article  Google Scholar 

  36. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: KDD (2014)

    Google Scholar 

  37. Meo, P.D.: Trust prediction via matrix factorisation. ACM Trans. Internet Technol. (TOIT) 19, 1–20 (2019)

    Article  Google Scholar 

  38. Zhang, X., Zhao, C., Wang, X., Yi, D.: Identifying missing and spurious interactions in directed networks. Int. J. Distrib. Sens. Netw. 11, 507386 (2015)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the Australian Research Council, grant no. DP190101087: “Dynamics and Control of Complex Social Networks”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingshan Jia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, M., Gabrys, B., Musial, K. (2021). Closure Coefficient in Complex Directed Networks. In: Benito, R.M., Cherifi, C., Cherifi, H., Moro, E., Rocha, L.M., Sales-Pardo, M. (eds) Complex Networks & Their Applications IX. COMPLEX NETWORKS 2020 2020. Studies in Computational Intelligence, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-65347-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-65347-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-65346-0

  • Online ISBN: 978-3-030-65347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics