Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blockchain- and Deep Learning-Empowered Resource Optimization in Future Cellular Networks, Edge Computing, and IoT: Open Challenges and Current Solutions

  • Chapter
  • First Online:
Blockchain for 5G-Enabled IoT

Abstract

Blockchain and deep learning are promising future technologies. Blockchain promotes decentralized services in the distributed systems, with enhanced security, privacy, transparency, reliability, and robustness. The deep learning provides the intelligent optimized solution to uncertain, complex problems. The empowerment of deep learning techniques to blockchain technologies can enhance the enactment of various upcoming technologies. In this chapter, we tide over the gap for deep learning techniques and outline its application for resource management in blockchain-empowered future generation cellular networks, IoT, and edge computing. We provide a brief background of the above technologies and explored the deep learning techniques for resource management in the upcoming technologies – future generation cellular networks, IoT, and edge computing. After that, we discuss the current deep learning techniques potential to facilitate the efficient deployment of deep learning with blockchain onto upcoming emerging technologies. We provided the encyclopedia review of deep learning techniques. In the end, we conclude the analysis by pinpointing the current research challenges and directions for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Zhang, H. Haddadi, P. Paul, DL in Mobile and wireless networking: A survey. J. IEEE Commun. Surv. Tutor. 21(3), 1–67 (2019)

    Google Scholar 

  2. Q. Bhatia, S. Tanwar, A. Kumari, P. Patel, ML adoption in blockchain-based smart applications: The challenges, and a way forward. J. IEEE Access 8, 474–489 (2019)

    Google Scholar 

  3. I. Mistry, S. Tanwar, S. Tyagi, N. Kumar, Blockchain for 5G-enabled IoT for industrial automation: A systematic review, solutions, and challenges. J. Mech. Syst. Signal Process. Elsevier 135, 1–21 (2020)

    Google Scholar 

  4. F. Hussain, S.A. Hassan, R. Hussain, E. Hossain, Machine learning for resource management in cellular and IoT networks: Potentials, current solutions, and open challenge. J. IEEE Commun. Surv. Tutor. 22(2), 1–26 (2019)

    Google Scholar 

  5. S.K. Singh, Y.S. Jeong, J.-H. Park, A deep learning-based IoT-oriented infrastructure for secure smart city. J. Sustain. Cities Soc. 60, 1–22 (2020)

    Google Scholar 

  6. F. Guo, F. Richard Yu, H. Ji, M. Liu, Adaptive resource allocation in future wireless networks with blockchain and mobile edge computing. J. Trans. Wireless Commun. 19(3), 1689–1703 (2019)

    Article  Google Scholar 

  7. I. Jovovi, S. Macek, I. Forenbacher, S. Husnjak, Innovative application of 5G and blockchain technology in industry 4.0. J. Ind. Trans. Netw. Intell. syst. 18(6), 1–6 (2019)

    Google Scholar 

  8. Y. Dai, D. Xu, S. Mahrajan, Blockchain and DRL empowered intelligent 5G beyond. J. IEEE Netw. 33(3), 10–17 (2019)

    Article  Google Scholar 

  9. P. Mehta, R. Gupta, S. Tanwar, Blockchain envisioned UAV networks: Challenges, solutions, and comparisons. J. Comput. Commun. 151, 518–538 (2020)

    Article  Google Scholar 

  10. D. Prerna, N. Kumar, R. Tekchandani, D-2-D content caching techniques in 5G: A taxonomy, solutions, and challenges. J. Comput. Commun. 153, 48–84 (2020)

    Article  Google Scholar 

  11. Y. Zhang, S. Wang, Z. Yaling, A blockchain-based framework for data sharing with fine-grained access control in decentralized storage systems. J. IEEE Access 6, 38437–38450 (2018)

    Article  Google Scholar 

  12. U.R. Krieger, H.L. Cech, G. Marcel, A fog comp. architecture to share sensor data by means of blockchain functionality, in Int. Conference of Fog Comp. IEEE ICFC, pp. 31–40, 2019

    Google Scholar 

  13. X. Zhang, K. Cjao Liu, K. Chai, Adaptive blockchain-based electric vehicle participation scheme in smart grid platform. J. IEEE Access 6, 25657–25665 (2018)

    Article  Google Scholar 

  14. D.C. Nguyen, N.P. Pubudu, D. Ming, A. Seneviratne, Secrecy performance of the UAV enabled cognitive relay network, in IEEE Third International Conference on ICCIS, pp. 117–121, 2018

    Google Scholar 

  15. A. Alshammari, B.R. Danda, M.S. Parwez, Edge computing enabled resilient wireless network virtualization for internet of things, in Proceedings of IEEE Third International Conference on Collaborative Computing: Networking, Applications and Worksharing, pp. 155–162, 2017

    Google Scholar 

  16. G. Pujolle, N. Bozic, S. Stefano, Securing virtual machine orchestration with blockchains, in The Proceeding of the International Conference of First Cyber Security in Networking Conference, pp. 1–8, 2017

    Google Scholar 

  17. G.A. Rebello, I.D. Alvarenga, O. Carlos, Securing configuration management and migration of VNF using blockchain, in Proceeding of IEEE Sym. on Network Operations and Management (IEEE/IFIP – NOMS), pp. 1–9, 2018

    Google Scholar 

  18. L. Chen, C. Xia, X. Liu, J. Wu, Etra: Efficient three-stage resource allocation auction for mobile blockchain in edge computing, in Proceeding of 24th – IEEE International Conference on Parallel & Distributed System-ICPADS, IEEE, pp. 701–705, 2018

    Google Scholar 

  19. V.C.M. Leung, L. Yiming, X. Li, F. Richard, Resource allocation for video transcoding and delivery based on mobile edge computing and blockchain, in Proceeding of IEEE Global Communications Conference, pp. 1–6, 2018

    Google Scholar 

  20. J. Wang, Y. Le, L. Xintong, D. Zhi, Prototype design and test of blockchain RAN, in The Proceeding of IEEE – International Conference on Communications Workshops – (ICC Work.), pp. 1–6, 2019

    Google Scholar 

  21. M. Bennis, K. Hyesung, S.L. Kim, Block-chained on-device federated learning. J. IEEE Commun. Lett. 24(6), 1279–1283 (2019)

    Google Scholar 

  22. N. Kumar, S. Tanwar, S. Tyagi, Multimedia big data computing for internet-of-things applications: Concepts, paradigms and solutions, in Intelligent Systems Reference Library, (Springer Nature Singapore Pvt Ltd, Singapore, 2019), pp. 1–425

    Google Scholar 

  23. H. Shah, K. Sheth, N. Kumar, S. Tanwar, R. Gupta, K. Patel, A taxonomy of AI techniques for 6G communication networks. J. Comput. Commun. 161, 279–303 (2020)

    Article  Google Scholar 

  24. D. Niyato, K. Jiawen, Z. Junshan, X. Shengli, Incentive mechanism for reliable federated learning: A joint optimization approach to combining reputation and contract theory. J. IEEE Internet Things 6(6), 10700–10714 (2019)

    Article  Google Scholar 

  25. S.G. Bilén, K. Kotobi, Blockchain-enabled spectrum access in CRN, in Proceeding of (WTS) Wireless Telecomm. Symposium, pp. 1–6, 2017

    Google Scholar 

  26. A. Zubow, B. Suzan, W. Adam, G. Piotr, Smart contracts for spectrum sensing as a service. J. IEEE Trans. Cogn. Commun. Netw. 5(3), 648–660 (2019)

    Article  Google Scholar 

  27. J Gazda, M. Taras, J. Minho, H. Longzhe, Blockchain-based intelligent network management for 5G and beyond, in Proceeding of Third International Conference on (AICT) Advance Information and Communications Technologies, pp. 36–39, 2019

    Google Scholar 

  28. J. Vora, S. Tyagi, N. Kumar, J.P.C. Rodrigues, Home-based exercise system for patients using IoT enabled smart speaker, in IEEE 19th International Conference on e-Health Networking, Applications and Services (Healthcom-2017), Dalian University, Dalian, China, 12–15 October 2017, pp. 1–6

    Google Scholar 

  29. K. Samdanis et al., On multi-access edge computing: A survey of the emerging 5G network edge cloud architecture and orchestration. IEEE Commun. Surv. Tutor. 19(3), 1657–1681 (2017)

    Article  Google Scholar 

  30. J. Zhang, L. Weiqi, W. Jian, Z. Yue, Deepchain: Auditable and privacy-preserving DL with blockchain-based incentive, Archive, Report No. 2018/679, p. 1, 2018

    Google Scholar 

  31. G. Shaoyong, X. Siya, Q. Feng, D. Yao, Trusted cloud-edge network resource management: DRL-driven service function chain orchestration for IoT. J. IEEE Internet Things 7(7), 1–13 (2019)

    Google Scholar 

  32. G. Fengxian, Y.F. Richard, Z. Heli, C.M.L. Victor, Adaptive resource allocation in FWN with blockchain and mobile edge computing. J. IEEE Trans. Wireless Commun. 19(3), 1–15 (2019)

    Google Scholar 

  33. Y. Dai, X. Du, C. Zhuang, Z. Yan, M. Sabita, Blockchain and deep reinforcement learning empowered intelligent 5G beyond. J. IEEE Intell. Netw. Cogn. Comput. ML 33(3), 1–10 (2019)

    Google Scholar 

  34. J.J. Kang, W. Maogiang, Z. Yan, H. Xumin, Y. Rong, S. Maharjan, Blockchain for secure and efficient data sharing in vehicular edge computing & networks. J. IEEE Internet Things 99(1), 1–13 (2018)

    Google Scholar 

  35. J. Kang, Y. Rong, S. Maharjan, Z. Yan, H. Ekram, Enabling localized P2P electricity trading among plug-in HEV using consortium block-chains. J. IEEE Trans. Ind. Inform. 13(6), 3154–3164 (2017)

    Article  Google Scholar 

  36. Z. Li, J. Kang, Y. Zhang, Y. Rong, Consortium block-chain for secure energy trading in industrial internet-of-things. J. IEEE Trans. Ind. Inform. 14(8), 3690–3700 (2017)

    Google Scholar 

  37. C.H. Liu, W. Shilin, L. Qiuxia, Block-chain-enabled data collection and sharing for industrial IoT with deep reinforcement learning. J. IEEE Trans. Ind. Inform. 15(6), 3516–3526 (2018)

    Article  Google Scholar 

  38. S. Tanwar, M. Patel, N. Kumar, R. Gupta, A DL-based cryptocurrency price prediction scheme for financial institutions. J. Inf. Secur. App. 55, 102583 (2020)

    Google Scholar 

  39. K. Patel, D. Mehta, C. Mistry, R. Gupta, S. Tanwar, N. Kumar, M. Alazab, Facial sentiment analysis using AI techniques: State-of-the-art, taxonomies, and challenges. IEEE Access 8, 90495–90519 (2020)

    Article  Google Scholar 

  40. A.F. Mohamed, M. Leandros, DeepCoin: A novel deep learning and blockchain-based energy exchange framework for smart grids. J. IEEE Trans. Eng. Manag. (Early Access) 67(4), 1285–1297 (2019)

    Google Scholar 

  41. H. Yin, J. Zexun, W. Yulei, B. Yin, FDC: A secure federated DL mechanism for data collaborations in the internet-of-things. J. IEEE Internet Things 7(7), 6348–6359 (2020)

    Article  Google Scholar 

  42. S. Garg, M.-P. Singh, N. Kumar, G.-S. Aujla, A. Singh, DL based Blockchain Framework for Secure SDN. J. IEEE Trans. Ind. Inform. (Early Access), 1 (2020)

    Google Scholar 

  43. F. Jameel, W.U. Khan, U. Javaid, R. Jantti, RL in block-chain-enabled IIoT networks: A survey of recent advances and open challenges. J. Sustain. MDPI 12(12), 1–12 (2020)

    Google Scholar 

  44. C. Xu, W. Kun, G. Mingyi, Intelligent resource management in block-chain-based cloud datacenters. J. IEEE Cloud Comput. 4(6), 50–59 (2017)

    Article  Google Scholar 

  45. H. Xu, V.K. Paulo, O. Onireti, B. Cao, Block-chain-enabled resource management and sharing for 6G communications. J. Digital Commun. Netw. 6(3), 261–269 (2020)

    Article  Google Scholar 

  46. C.C. Chenl, L. Boyang, J. Taeho, S. Yiju, Energy-recycling block-chain with proof-of-deep-learning, in Proceeding of IEEE International Conference on Block-Chain and Cryptocurrency, IEEE, 14–17 May 2019

    Google Scholar 

  47. A. Kumari, S. Tyagi, N. Kumar, Verification and validation techniques for streaming big data analytics in internet of things environment. IET Netw. 8(3), 155–163 (2019)

    Article  Google Scholar 

  48. S. Banarjee, V. Odelu, A.K. Das, S. Chattopadhyay, N. Kumar, Y. Park, Design of an Anonymity-Preserving Group Formation Based Authentication Protocol in global mobility networks. IEEE Access 6(1), 20673–20693 (2018)

    Article  Google Scholar 

  49. J.A. Alzubi, B. Bharathikannan, R. Manikandan, A. Khanna, C. Thaventhiran, Boosted neural network ensemble classification for lung cancer disease diagnosis. Appl. Soft Comput. 80, 579–591 (2019)

    Article  Google Scholar 

  50. Z. Chen, Q. Zhang, T.Y. Laurence, L. Peng, A survey on deep-learning for big data. J. Inf. Fusion 42, 146–157 (2018)

    Article  Google Scholar 

  51. S. Vassanelli, A. Hussain, M.S. Kaiser, M. Mahmud, Applications of deep-reinforcement-learning to biological data. J. IEEE Trans. Neural Netw. Learning-Syst. 29(6), 2063–2079 (2018)

    Article  MathSciNet  Google Scholar 

  52. W. Saad, P. Taehyeun, N. Abuzainab, Learning how to communicate in the internet-of-things: Finite resources and heterogeneity. J. IEEE Access 4, 7063–7073 (2016)

    Article  Google Scholar 

  53. B.B. Budinska, B. Frankovic, Advantage and disadvantage of heuristic and multi agents approaches to the solution of scheduling problem. Proc. IFAC 33(13), 367–372 (2000)

    Article  Google Scholar 

  54. S. Doss, A. Nayyar, G. Suseendran, A. Khanna, L.H. Son, P.H. Thong, APDJFAD: Accurate prevention and detection of jelly fish attack in MANET. IEEE Access 6, 56954–56965 (2018)

    Article  Google Scholar 

  55. R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, M.S. Obaidat, B. Sadoun, HaBiTs: Blockchain-based Telesurgery Framework for Healthcare 4.0, in International Conference on Computer, Information and Telecommunication Systems (IEEE CITS-2019), Beijing, China, August 28–31, 2019, pp. 6–10

    Google Scholar 

  56. M. Debbah, A. Zappone, M. Di-Renzo, Wireless networks design in the era of DL: Model-based, AI-based, or both? arXiv:1902.02647 1, 1–43 (2019)

    Google Scholar 

  57. S. Gong, D. Niyato, P. Wang, L.C. Ying, D.T. Hoang, Applications of deep reinforcement learning in communications and networking: A survey. J. IEEE Commun. Surv. Tutor 21(4), 3133–3174 (2019)

    Article  Google Scholar 

  58. Y. Song, S. Houbing, D. Jiang, Z. Jiang, A new DQL based transmission scheduling mechanism for the cognitive internet of things. J. IEEE Internet Things 5(4), 2375–2385 (2018)

    Article  Google Scholar 

  59. D. Cho, K. Minhoe, L. Woongsup, Deep cooperative sensing: Cooperative spectrum sensing based on CNN. IEEE Trans. Veh. Technol. 68(3), 3005–3009 (2019)

    Article  Google Scholar 

  60. M. Kim, D.H. Cho, W. Lee, Deep cooperative sensing: Cooperative, spectrum sensing based on CNN. IEEE Trans. Veh. Technol. 68(3), 3005–3009 (2019)

    Google Scholar 

  61. D. Niyato, L. Zhang, G. Feng, J. Tan, Y.-C Liang, DRL based modulation and coding scheme selection in cognitive Heterogeneous-Networks. arXiv preprint – arXiv:1811.02868, pp. 1–12, 2018

    Google Scholar 

  62. J.M. Kim, H-Y. Kim, A load balancing scheme based on DL in Internet-of-Things. J. Cluster Comput. Springer, 20, 873–878 (2017)

    Google Scholar 

  63. X. Du, L. Yujie, G. Mohsen, L. Huang, Resource management for future mobile networks: Architecture and technologies. J. Comput. Netw. Elsevier, 129(2), 392–398 (2017)

    Google Scholar 

  64. W. Saad, U. Chalita, L. Dong, Proactive resource management in LTE-U systems: A DL perspective. arXiv-1702.07031, pp. 1–15, Feb 2017

    Google Scholar 

  65. E. Hossain, K.I. Ahmed, A DQL method for downlink power allocation in multi-cell networks (Apr 2019), https://arxiv.org/pdf/1904.13032v1.pdf

  66. E. Hossain, K.I. Ahmed, H. Tabassum, DL for radio resource allocation in multi-cell networks. J. IEEE Netw. 33(6), 188–195 (2018)

    Google Scholar 

  67. H. Yin, N. Zhao, Y. Hongxi, Integrated networking, caching, and computing for connected vehicles: A DRL approach. IEEE Trans. Technol. 67(1), 44–55 (2017)

    Google Scholar 

  68. N. K. George, N. Chauhan, N. Choudhury, A comparison of RL based approaches to appliance scheduling, in Proceeding of Second International Conference on Contemporary Comp. and Informatics – (IC3I), pp. 253–258, 2016

    Google Scholar 

  69. P. Hu, S. Katti, S. Chinchali, Cellular network traffic scheduling with DRL, in The Proceeding of International Conference on Artificial-Intelligence (AAAI), June 2018

    Google Scholar 

  70. T. Verbelen, S. Bohex, B. Dhoedt, S. Pieter, Discrete event simulation for efficient and stable resource allocation in collaborative mobile cloudlets. J. Simul. Model. Pract. Theory 50, 109–129 (2015)

    Article  Google Scholar 

  71. M.M. Zorzi, M. De Filippo, A. Testolin, A ML approach to QoE-based video admission control and resource allocation in wireless systems, in Proceeding of 13th Annual Mediterranean Ad Hoc Networking Workshop, IEEE, pp. 31–38, 2014

    Google Scholar 

  72. B. Shihada, I. Alqerm, Enhanced ML scheme for energy efficient resource allocation in 5G heterogeneous cloud RCN, in IEEE 28th Annual International Sym. on Personal, Indoor, and Mobile Radio Comm. (PIMRC), pp. 1–7, 2017

    Google Scholar 

  73. M. Alizadeh, M. Hongzi, S. Kandula, I. Menache, Resource management with DRL, in Proceedings of the 15th ACM Workshop on Hot Topics in Networks (HotNets), ACM, pp. 50–56, 2016

    Google Scholar 

  74. R. Sidhu, A. Patil, L. Zhang, A. Basu, V. M. Suresh, Powering the IoT through embedded ML and lora, in Proceeding of IEEE 4th World Forum on Internet-of-Things, pp. 349–354, 2018

    Google Scholar 

  75. M. Chen, Z. Fan, X. Gu, S. Nie, D-2-D power control based on supervised and unsupervised learning, in Third IEEE International Conference on Computer and Comm. (IEEE – ICCC), pp. 558–563, 2017

    Google Scholar 

  76. P. Lynggaard, Using ML for adaptive interference suppression in WSN. IEEE Sensors 18(21), 8820–8826 (2018)

    Google Scholar 

  77. J. Vora, S. Kanriya, S. Tyagi, N. Kumar, V. Sharma, I. You, Human arthritis analysis in fog computing environment using Bayesian network classifier and thread protocol. IEEE Consum. Electron. Mag. 9(1), 88–94 (2020)

    Google Scholar 

  78. M. Gidlund, S. Grimaldi, A. Mahmood, Real-time interference identification supervised learning: Embedded. Coexistence awareness in Internet-of-Things devices. IEEE Access 7, 835–850 (2018)

    Google Scholar 

  79. X. Wang, S-K. Sharma, Collaborative distributed Q-learning for RACH congestion minimization in MIoT networks. IEEE Commun. Lett. 23(4), 600–603 (2019)

    Google Scholar 

  80. R.I. Ansari, M. Guizani, C. Chrysostomou, M. Shahid, 5G device—2—device networks: Techniques, challenges, and future prospects. IEEE Syst. J. 12(4), 3970–3984 (2018)

    Google Scholar 

  81. B. Vucetic, M. Ding, Y. Li, P. Cheng, M. Chuan, H. Yongjun, Localized small cell caching: A ML approach based on rating data. IEEE Trans. Commun. 67(2), 1663–1676 (2018)

    Google Scholar 

  82. S. Maghsudi, S. Stanczak, Channel selection for network-assisted device-2-device communication via no-regret bandit learning with calibrated forecasting. IEEE Trans. Wireless Commun. 14(3), 1309–1322 (2015)

    Google Scholar 

  83. Y. Miyanaga, A. Asheralieva, An autonomous learning-based algorithm for joint channel and power level selection by device-to-device pairs in HNets cellular networks. IEEE Trans. Commun. 64(9), 3996–4012 (2016)

    Google Scholar 

  84. Y. Luo, S. Zhiping, Y. Qicong, Dynamic resource allocations based on Q-learning for device-to-device communication in CN, in Proceeding of 11th International Comp. Conference on Wavelet Active Media Tech. Info. Processing, pp. 385–388, 2014

    Google Scholar 

  85. I. AlQerm, S. Basem, Energy-efficient power allocation in multitier 5G networks using enhanced online learning. IEEE Trans. Veh. Technol. 66(12), 11086–11097 (2017)

    Google Scholar 

  86. A. Thakral, S. Gupta, S. Sharma, Novel technique for prediction analysis using normalization for an improvement in k-means clustering, in Proceeding of 2016 International Conference on IT. – The Next Generation IT Summit on the Theme-IoT: Connect your Worlds, pp. 32–36, 2016

    Google Scholar 

  87. V.V. Kumari, P. Ravi, K. Verma, A semi-supervised IDS using active learning svm and fuzzy c-means clustering, in Proceeding of International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 481–485, 2017

    Google Scholar 

  88. R. Gupta, A. Kumari, S. Tanwar, N. Kumar, Blockchain-envisioned Softwarized multi-swarming UAVs to tackle COVID-19 situations. IEEE Netw., 1–7 (2020)

    Google Scholar 

  89. R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, Tactile internet and its applications in 5G era: A comprehensive review. Int. J. Commun. Syst. 32(14), 1–49 (2019)

    Article  Google Scholar 

  90. A. Khan, S. Anwar, M.A. Khan, M.N. Khan, A novel learning method to classify data streams in the IoT, in Proceedings of IEEE National Software Engg. Conference, pp. 61–66, 2014

    Google Scholar 

  91. H. Ochiai, M.S. Jamal, K.S. Venkata, E. Hiroshi, K. Kataoka, Instruct: A clustering based identification of valid comm. in internet of things networks, in 5th Int. Conference on Internet-of-Things: Systems, Management and Security, pp. 228–233, 2018

    Google Scholar 

  92. Y.J. Omar, D.Y. Paul, Y. Al-Hammadi, M. Al-Qutayri, S. Muhaidat, Semi-supervised multi-layered clustering model for ID. J. Sci. Direct Dig. Commun. Netw. 4(4), 227–286 (2018)

    Google Scholar 

  93. A. Pourkhalili, H.R. Arkian, R.E. Atani, A cluster-based vehicular cloud architecture with learning-based resource management. J. Supercomput. 71(4), 1401–1426 (2015)

    Google Scholar 

  94. R. Gupta, S. Tanwar, S. Tyagi, N. Kumar, Machine learning models for secure data analytics: A taxonomy and threat model. Comput. Commun. 153, 406–440 (2020)

    Article  Google Scholar 

  95. A. Kumari, R. Gupta, S. Tanwar, N. Kumar, Blockchain and AI amalgamation for energy cloud management: Challenges, solutions, and future directions. J. Parallel Distrib. Comput. 143, 148–166 (2020)

    Article  Google Scholar 

  96. V. Koivunen, J. Oksanen, J. Lunden, RL method for energy efficient cooperative multiband spectrum sensing, in Proceeding of IEEE International Workshop on ML for Signal Processing, pp. 59–64, 2010

    Google Scholar 

  97. H. Kuang, M. Xiaolin, S. Ning, Y. Hong, X. Liu, Co-operative spectrum sensing using extreme ML for CRN with multiple primary users, in Third IEEE Advanced IT, Electronic and Automation Control Conference (IEEE-IAEAC), pp. 536–540, 2018

    Google Scholar 

  98. B. Vucetic, Y. Xu, Z. Chen, Y. Li, P. Cheng, Mobile collaborative spectrum sensing for HNets: A bayesian ML approach. IEEE Trans. Signal Process. 66(21), 5634–5647 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  99. R. Thakkar, P. Thakor, K. Singh, M-Tesla-Based Security Assessment in Wireless Sensor Network, in International Conference on Computational Intelligence and Data Science (ICCIDS 2018), NorthCap University, Gururgram, 7–8 April 2018, Procedia, Computer Science, Elsevier, pp. 1154–1162

    Google Scholar 

  100. Z. Li, W. Wu, X. Liu, P. Qi, Improved cooperative spectrum sensing model based on ML for CRN. IET Commun. 12(19), 2485–2492 (2018)

    Article  Google Scholar 

  101. S. Kumar, F. Hu, A.M. Koushik, Intelligent spectrum management based on transfer actor-critic learning for rateless transmissions in CRN. IEEE Trans. Mobile Comput. 17(5), 1204–1215 (2018)

    Article  Google Scholar 

  102. T. Otoshi, M. Murata, Y. Takahashi, K. Shimoto, Y. Ohsita, K. Ishibashi, Traffic prediction for dynamic traffic engineering. J. Elsevier Comput. Netw. 85(5), 34–60 (2015)

    Google Scholar 

  103. X. Xu, C. Han, J. Qin, T. Zhou, G. Han, A learning-based multi-model integrated framework for dynamic traffic flow forecasting. J. Springer Neural Process. Lett. 85, 407–430 (2018)

    Google Scholar 

  104. M. Qiao, M. Yanqing, J. Liu, Y. Blan, Real-time multi-application network traffic identification based on ML. J. Adv. Neural Netw. 9377, 473–480 (2015)

    Google Scholar 

  105. Y. Zuo, Y. Wu, C. Laizhong, G. Min, Learning-based network path planning for traffic engineering. J. Elsevier Future Gen. Comput. Syst. 92, 59–67 (2018)

    Article  Google Scholar 

  106. B.H. Juang, X. Zhang, Power of DL for channel estimation and signal detection in OFDM systems. IEEE Wireless Commun. Lett. 7(1), 114–117 (2018)

    Google Scholar 

  107. M.S. Omar, S. Ali-Hassan, N. Qiang, S. Mumtaz, L. Musavian, H. Pervaiz, Multi-objective optimization in 5G hybrid networks. J. IEEE Internet Things 5(3), 1588–1597 (2018)

    Google Scholar 

  108. K. Vasudeva et al., Fuzzy logic game-theoretic approach for energy efficient operation in H-Nets, in Proceeding of IEEE International Conference on Communication Workshops, pp. 552–557, 2017

    Google Scholar 

  109. S. Tanwar, Q. Bhatia, P. Patel, A. Kumari, P.K. Singh, W.C. Hong, Machine learning adoption in Blockchain-based smart applications: The challenges, and a way forward, IEEE Access 8, 474–488 (2020).

    Google Scholar 

  110. J.S. Perez, S. Lane, S.K. Jayaweera, ML aided cognitive rat selection for 5G HNets, in International Black Sea Conference on Communications and Networking – IEEE, pp. 1–5, June 2017

    Google Scholar 

  111. P. Ting, J.C. Chen, K-K. Wong, Channel estimation for massive MIMO using gaussian-mixture bayesian learning. J. IEEE Trans. Wireless Commun. 14(3), 1356–1368 (2015)

    Google Scholar 

  112. Y. Zhao, J. Zhang, Y. Zhao, Mobile location based on SVM in MIMO communication systems, in Proceeding of IEEE International Conference on Information, Networking and Automation, vol. 2, (IEEE, 2010), pp. 352–360

    Google Scholar 

  113. J. Choi, K. Kim, J. Lee, DL based pilot allocation scheme for 5G massive MIMO system. IEEE Commun. Lett. 22(4), 828–831 (2018)

    Google Scholar 

  114. X. Gao, Z. Dong, W. Wang, S. Junchao, ML based link adaptation method for MIMO system, in 29th Annual International Symposium. on Personal, Indoor and Mobile Radio Comm. IEEE, pp. 1226–1231, Sept 2018

    Google Scholar 

  115. N. Kabra, P. Bhattacharya, S. Tyagi, MudraChain: Blockchain-based framework for automated cheque clearance in financial institutions. Futur. Gener. Comput. Syst. 102, 574–587 (2020)

    Article  Google Scholar 

  116. J. Vora, S. Tyagi, N. Kumar, M.S. Obaidat, A systematic review on security issues in VANET. Secur. Priv. J. Wiley, 1(5), 1–27 (2018)

    Google Scholar 

  117. R.W. Heath, R.C. Daniels, C.M. Caramanis, Adaptation in convolutionally coded MIMO-OFDM wireless systems through supervised learning and subcarrier ordering. J. IEEE Trans. Veh. Technol. 59(1), 114–126 (2010)

    Google Scholar 

  118. T.F. Maciel, V.F. Weskley, F.C. Hugo Neto, F.M. Rafael Lima, D.C. Araujo, A low complexity solution for resource allocation and SDMA grouping in massive MIMO systems, in 15th IEEE International Symposium on Wireless Communication System (IEEE-ISWCS), pp. 1–6, Aug 2018

    Google Scholar 

  119. J. Wang et al., A ML framework for resource allocation assisted by CC. IEEE Netw. 32(2), 144–151 (2018)

    Google Scholar 

  120. K. Higuchi, Y. Saito, Y. Kishiyama, T. Nakamura, A. Benjebbour, A. Li, NOMA for cellular future radio access, in 77th International Conference in Vehicular Technology – IEEE (VTC Spring), pp. 1–5, June 2013

    Google Scholar 

  121. Z. Ding, Z. Wang, NOMA: Common myths and critical questions. arXiv preprint arXiv: 1809.07224, 2018

    Google Scholar 

  122. H.V. Poor, L. Xiao, C. Dai, L. Yanda, RL based NOMA power allocation in the presence of smart jamming. J. IEEE Trans. Veh. Technol. 67(4), 3377–3389 (2017)

    Google Scholar 

  123. A. Mohajer, F. Nikjoo, A. Mirzaei, A novel approach to efficient resource allocation in NOMA HNets: Multi-criteria green resource management. J. Appl. Artif. Intell. 32(7–8), 583–612 (2018)

    Google Scholar 

  124. M. Liu, G. Gui, T. Song, Deep cognitive perspective: Resource allocation for NOMA based HetNets internet-of-things with imperfect SIC. IEEE Internet Things J. 6(2), 2885–2894 (2018)

    Google Scholar 

  125. B. Li, C. Chenli, T. Jung, Y. Shi, Energy-recycling blockchain with PoDL, in IEEE International Conference on Block-Chain & Cryptocurrency, pp. 1–10, 2019

    Google Scholar 

  126. S. Maharjan, Y. Lu, X. Huang, Y. Zhang, K. Zhang, Blockchain and FL for privacy preserved data sharing in industrial internet of things. J. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2019)

    Google Scholar 

  127. Y. Saez, A. Baldominos. Coin. AI: A PoUW scheme for block-chain-based distributed DL. arXiv preprint arXiv:1903.09800, pp. 1–17, 2019

    Google Scholar 

  128. D. Siegel, Understanding the DAO attack (2016). Web: http://www.coindesk.com/understanding-dao-hack-journalists

  129. R. Agrawal, A. Swami, T. Lmielinski, Mining association rules between sets of items in large DB. J. ACM Sigmod Record 22(2), 207–216 (1993)

    Google Scholar 

  130. R.K. Raman, N.K. Bore, I.M. Markus, Promoting distributed trust in ML and computational simulation via a block-chain network. arXiv preprint arXiv:1810.11126, 2018

    Google Scholar 

  131. H. Huang, H. Sari, G. Gui, Y. Song, DL for an effective non-orthogonal multiple access scheme. IEEE Trans. Veh. Technol. 67(9), 8440–8450 (2018)

    Google Scholar 

  132. D. Niyato, A. Asheralieva, Distributed dynamic resource management and pricing in the IoT systems with blockchain-as-a-service and UAV-enabled mobile edge computing. IEEE Internet Things J. 7(3), 1974–1993 (2020)

    Google Scholar 

  133. N. Shan, X. Cui, Z. Gao, “DRL + FL”: An intelligent resource allocation model based on deep reinforcement learning for mobile edge computing. Comput. Commun. 160, 14–24, (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Upinder Kaur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaur, U., Shalu (2021). Blockchain- and Deep Learning-Empowered Resource Optimization in Future Cellular Networks, Edge Computing, and IoT: Open Challenges and Current Solutions. In: Tanwar, S. (eds) Blockchain for 5G-Enabled IoT. Springer, Cham. https://doi.org/10.1007/978-3-030-67490-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67490-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67489-2

  • Online ISBN: 978-3-030-67490-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics