Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identification of Sequential Feature for Volcanic Ash Cloud Using FNN-LSTM Collaborative Computing

  • Conference paper
  • First Online:
Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom 2020)

Abstract

Collaborative computing performs quickly and accurately the task via combining the multimedia, multi-methods, and multi-clients. Analyzing of traditional feedforward neural network (FNN), long short-term memory (LSTM) neural networks and remote sensing data, this paper proposes a new identification method of sequential feature based on FNN-LSTM collaborative calculation in the volcanic ash cloud monitoring. In this method, combining remote sensing data, the FNN network is used firstly to construct the identification model of volcanic ash cloud. Next, the LSTM network is used to identify the sequential feature of dynamic changes in volcanic ash cloud based on the text data of the volcanic ash report. And then the simulation and true volcanic ash cloud case is performed and analyzed. The experimental results show that: 1) the proposed method is high in training accuracy with 76.54% and testing accuracy with 77%, respectively, and has obvious advantages for small-scale data volumes; 2) the total accuracy and RMS of the simulation analysis reached 79.05% and 0.0149, respectively, it verified the feasibility and effectiveness in the prediction of spatiotemporal evolution; 3) the anti-noise property and the image segmentation effect is good, the obtained sequential feature of the volcanic ash cloud are closer to the actual diffusion. It can provide a reference for sequential feature extraction and dynamic monitoring of volcanic ash cloud in complex environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Prata, F., Kristianesen, N., Thomas, H.E., et al.: Ash metrics for European and trans-atlantic air routes during the Eyjafjallajoukull eruption 14 April to 23 May 2010. J. Geophys. Res. Atmos. 123(10), 5469–5483 (2018)

    Article  Google Scholar 

  2. Krippner, J.B., Belousov, A.B., Belousova, M.G., Ramsey, M.S.: Parametric analysis of lava dome-collapse events and pyroclastic deposits at Shiveluch volcano, Kamchatka, using visible and infrared satellite data. J. Volcanol. Geoth. Res. 354(1), 115–129 (2018)

    Article  Google Scholar 

  3. Cheng, B., Liang, C.B., Liu, X.N., et al.: Research on a novel extraction method using deep learning based on GF-2 images for aquaculture areas. Int. J. Remote Sens. 41(9), 3575–3591 (2020)

    Article  Google Scholar 

  4. Mossop, S.C.: Volcanic dust collected at an altitude of 20 km. Nature 203(4947), 824–827 (1964)

    Article  Google Scholar 

  5. Farlow, N.H., Oberbeck, V.R., et al.: Size distributions and mineralogy of ash particles in the stratosphere from eruptions of Mount St. Helens Sci. 211(4484), 832–834 (1981)

    Article  Google Scholar 

  6. Hobbs, P.V., Radke, L.F., Eltgroth, M.W., et al.: Airborne studies of the emissions from the volcanic eruptions of Mount St. Helens Sci. 211(4484), 816–818 (1981)

    Article  Google Scholar 

  7. Krueger, A.J.: Sighting of El Chichon sulfur dioxide clouds with the Nimbus 7 total ozone mapping spectrometer. Science 220(4604), 1377–1379 (1983)

    Article  Google Scholar 

  8. Malingreau, J.P.: Kaswanda: monitoring volcanic eruptions in Indonesia using weather satellite data: the Colo eruption of July 28, 1983. J. Volcanol. Geoth. Res. 27(1–2), 179–194 (1986)

    Article  Google Scholar 

  9. Prata, A.J.: Observations of volcanic ash clouds in the 10–12 μm window using AVHRR/2 data. Int. J. Remote Sens. 10(4–5), 751–761 (1989)

    Article  Google Scholar 

  10. Krotkov, N., Torres, O., Seftor, C., et al.: Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spur. Geophys. Res. Lett. 26(4), 455–458 (1999)

    Article  Google Scholar 

  11. Mccarthy, E.B., Bluth, G.J.S., Watson, I.M., et al.: Detection and analysis of the volcanic ash clouds associated with the 18 and 28 August 2000 eruptions of Miyakejima volcano. Jpn. Int. J. Remote Sens. 29(22), 6597–6620 (2008)

    Article  Google Scholar 

  12. Carey, S., Sigurdsson, H.: Influence of particles aggregation on deposition of distaltephra from the May 18, 1980, eruption of Mount St. Helens Volcano. J. Geophys. Res. Atm. 87(B8), 7061–7072 (1982)

    Article  Google Scholar 

  13. Stenchikov, G.L., et al.: Radiative forcing from the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. Atmos. 103(D12), 13837–13857 (1998)

    Article  Google Scholar 

  14. Kirchner, I., Stenchikov, G.L., Graf, H.F., Roboc, A., Carlos Antuna, J.: Climate model simulation of winter warming and summer cooling following the 1991 Mount Pinatubo volcanic eruption. J. Geophys. Res. Atmos. 104(D16), 19039–19055 (1999)

    Article  Google Scholar 

  15. Durant, A.J., Villarosa, G., Rose, W.I., Delmelle, P., Prata, A.J., Viramonte, J.G.: Long-range volcanic ash transport and fallout during the 2008 eruption of Chaiten volcano. Chile. Phys. Chem. Earth 45–46, 50–64 (2012)

    Article  Google Scholar 

  16. Steensen, T., Stuefer, M., Webley, P., et al.: Qualitative comparison of Mount Redoubt 2009 volcanic ash clouds using the PUFF and WRF-Chem dispersion models and satellite remote sensing data. J. Volcanol. Geoth. Res. 259(2), 235–247 (2013)

    Article  Google Scholar 

  17. Ellrod, G.P.: Impact on volcanic ash detection caused by the loss of the 12.0 μm “split window” band on GIES imagers. J. Volcanol. Geoth. Res. 135(1–2), 91–103 (2004)

    Article  Google Scholar 

  18. Liu, Z.Y., Vaughan, M., Winker, D., et al.: The CALIPSO lidar cloud and aerosol discrimination: version 2 algorithm and initial assessment of performance. J. Atmos. Ocean. Tech. 26(7), 1198–1212 (2009)

    Article  Google Scholar 

  19. Hinton, G., Deng, L., Yu, D., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Proc. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  20. Krizhevsky, A., Sutskever, I., Hinton, G.: Image classification with deep convolutional neural network. Adv. Neural Inf. Process. Sys. 4(4), 1097–1105 (2012)

    Google Scholar 

  21. Arel, I.: Deep reinforcement learning as foundation for artificial general intelligence. Artif. Gen. Intell. 33(1), 89–102 (2012)

    Google Scholar 

  22. Shen, Z.F., Li, J.L., Yu, X.J.: Water information extraction of Baiyangdian wet land based on the collaborative computing method. J. Geo-inf. Sci. 18(5), 690–698 (2016)

    Google Scholar 

  23. Floropoulos, N., Tefas, A.: Complete vector quantization of feedforward neural networks. Neurcomputing 367, 55–63 (2019)

    Article  Google Scholar 

  24. Shehu, G.S., Cetinkaya, N.: Flower pollination-feeodfoward neural network for load forecasting in smart distribution grid. Neural Comput. Appl. 31(10), 6001–6012 (2019)

    Article  Google Scholar 

  25. Guo, Y.M., Peng, H., Yong, Y.: Blind separation algorithm for non-cooperative PCMA signal based on feedfoward neural network. Acta Electron. Sin. 47(2), 302–307 (2019)

    Google Scholar 

  26. Xu, X., He, H.G.: A gradient algorithm for neural-network-based reinforcement learning. Chin. J. Comput. 26(2), 227–233 (2003)

    MathSciNet  Google Scholar 

  27. Silver, D., Huang, A., Maddison, C.J., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Article  Google Scholar 

  28. Filizzola, C., Lacava, T., Marchese, F., et al.: Assessing RAT (robust AVHRR techniques) performances for volcanic ash cloud detection and monitoring in near real-time: the 2002 eruption of Mt. Etna (Italy). Remote Sens. Environ. 107(3), 440–454 (2007)

    Article  Google Scholar 

  29. Watson, I.M., Realmuto, V.J., Rose, W.I., et al.: Thermal infrared remote sensing of volcanic emissions using the moderate resolution imaging spectroradiometer. J. Volcanol. Geoth. Res. 135(1–2), 75–89 (2004)

    Article  Google Scholar 

  30. Gangale, G., Prata, A.J., Clarisse, L.: The infrared spectral signature of volcanic ash determined from high-spectral resolution satellite measurements. Remote Sens. Environ. 114(2), 414–425 (2010)

    Article  Google Scholar 

  31. Marzano, F.S.: Remote sensing of volcanic ash cloud during explosive eruptions using ground-based weather RADAR data processing. IEEE Signal Proc. Mag. 28(2), 124–126 (2011)

    Article  Google Scholar 

  32. Nakagawa, M., Ohba, T.: Minerals in volcanic ash 1: primary minerals and volcanic glass. Glob. Environ. Res. 6(2), 41–51 (2003)

    Google Scholar 

  33. Cronin, S.J., Hedley, M.J., Neall, V.E., et al.: Agronomic impact of tephra fallout from 1995 and 1996 Ruapehu volcano eruptions. New Zealand Environ. Geol. 34(1), 21–30 (1998)

    Google Scholar 

  34. Picchiani, M., Chini, M., Corradini, S., et al.: Volcanic ash detection and retrievals using MODIS data by means of neural networks. Atmos. Meas. Tech. 4(12), 2619–2627 (2011)

    Article  Google Scholar 

  35. Webley, P.W., Atkinson, D., Collins, R.L., et al.: Predicting and validating the tracking of a volcanic ash cloud during the 2006 eruption of Mt. Augustine volcano. B. Am. Meteorol. Soc. 89(11), 1647–1658 (2008)

    Article  Google Scholar 

  36. Winker, D.M., Tackett, J.L., Getzewich, B.J., et al.: The global 3D distribution of tropospheric aerosols as characterized by CALIOP. Atmos. Chem. Phys. 13(6), 3345–3361 (2013)

    Article  Google Scholar 

  37. Folch, A., Costa, A., Basart, S.: Validation of the FALL 3D ash dispersion model using observations of the 2010 Eyjafjallajökull volcanic ash clouds. Atmos. Environ. 48(2), 165–183 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Science and Technology Development Foundation of Shanghai in China under Grant No. 19142201600 and Graduate Innovation and Entrepreneurship Program in Shanghai University in China under Grant No. 2019GY04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lan Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, L., Li, Cf., Sun, Xk., Shi, J. (2021). Identification of Sequential Feature for Volcanic Ash Cloud Using FNN-LSTM Collaborative Computing. In: Gao, H., Wang, X., Iqbal, M., Yin, Y., Yin, J., Gu, N. (eds) Collaborative Computing: Networking, Applications and Worksharing. CollaborateCom 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 349. Springer, Cham. https://doi.org/10.1007/978-3-030-67537-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67537-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67536-3

  • Online ISBN: 978-3-030-67537-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics