Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Augmented Reality for Cognitive Impairments

  • Chapter
  • First Online:
Springer Handbook of Augmented Reality

Part of the book series: Springer Handbooks ((SHB))

Abstract

Augmented reality (AR) is a rapidly developing technology that has introduced new approaches for the design of human technology interaction in various fields. However, application of AR in the area of assistive systems for cognitively impaired people is not deeply studied yet. In this chapter, we investigate the state of the art of AR in assistive systems for the cognitively impaired. Specifically, we will investigate the role of AR during the design, implementation, and performance assessment of perception and memory augmentation assistive systems. We start with a summary of various technologies utilized for the development of AR systems, including sensor and camera technology, data visualization methods, computing paradigms, and intelligent data processing algorithms. Then, we discuss the fundamental mechanisms behind human memory system and look at the examples of the first technology-based human memory and intelligence augmentation systems. We overview various methods for estimation of the human cognitive state and mental workload utilized during the evaluations of such assistive systems in human involved experimental studies. Our main objective in this work is to find out the current status, challenges, and future perspectives of AR in the research of human memory and perception augmentation systems for the people with cognitive impairments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Bank Group. https://www.worldbank.org/en/topic/mental-health. Accessed 22 Jan 2021

  2. Patel, V., Chisholm, D., Parikh, R., Charlson, F.J., Degenhardt, L., Dua, T., Ferrari, A.J., Hyman, S., Laxminarayan, R., Levin, C.: Addressing the burden of mental, neurological, and substance use disorders: key messages from disease control priorities. Lancet. 387(10028), 1672–1685 (2016)

    Google Scholar 

  3. Lancioni, G.E., Sigafoos, J., O’Reilly, M.F., Singh, N.N.: Assistive Technology: Interventions for Individuals with Severe/Profound and Multiple Disabilities. Springer Science & Business Media (2012)

    Google Scholar 

  4. Ong, S.K., Shen, Y., Zhang, J., Nee, A.Y.C.: Augmented reality in assistive technology and rehabilitation engineering. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 603–630. Springer, New York (2011)

    Google Scholar 

  5. Leo, M., Medioni, G., Trivedi, M., Kanade, T., Farinella, G.M.: Computer vision for assistive technologies. Comput. Vis. Image Underst. 154, 1–15 (2017)

    Google Scholar 

  6. Azuma, R.T.: A survey of augmented reality. Presence Teleop. Virt. Environ. 6(4), 355–385 (1997)

    Google Scholar 

  7. Sutherland, I.E.: The ultimate display. In: Proceedings of the International Federation of Information Processing Congress (1F1P), pp. 506–508. Macmillan and Co, London (1965)

    Google Scholar 

  8. Wade, N.J.: Charles Wheatstone (1802–1875). SAGE, London (2002)

    Google Scholar 

  9. Makhataeva, Z., Varol, H.A.: Augmented reality for robotics: a review. Robotics. 9(2), 21 (2020)

    Google Scholar 

  10. NASA. https://www.nasa.gov/feature/ames/augmented-reality-air-traffic-management. Accessed 22 Jan 2021

  11. Xiao, C., Lifeng, Z.: Implementation of mobile augmented reality based on Vuforia and Rawajali. In: Proceedings of the 1FFF International Conference on Software Engineering and Service Science, pp. 912–915. IEEE, Beijing (2014)

    Google Scholar 

  12. Hübner, P., Weinmann, M., Wursthorn, S.: Marker-based localization of the Microsoft Hololens in building models. Int. Arch. Photogramm. Remote Sens. Spatial Informat. Sci. 42(1), 195 (2018)

    Google Scholar 

  13. Rekimoto, J.: Matrix: a realtime object identification and registration method for augmented reality. In: Proceedings of the IEEE Asia Pacific Computer Human Interaction, pp. 63–68. IEEE, Shonan Village Center (1998)

    Google Scholar 

  14. Lin, C.-H., Chung, Y., Chou, B.-Y., Chen, H.-Y., Tsai, C.-Y.: A novel campus navigation app with augmented reality and deep learning. In: Proceedings of the IEEE International Conference on Applied System Invention (ICASI), pp. 1075–1077. IEEE, Chiba (2018)

    Google Scholar 

  15. Ren, P., Qiao, X., Huang, Y., Liu, L., Dustdar, S., Chen, J.: Edge-assisted distributed DNN collaborative computing approach for mobile Web augmented reality in 5G networks. IEEE Netw. 34(2), 254–261 (2020). https://doi.org/10.1109/MNET.011.1900305

    Article  Google Scholar 

  16. Marner, M.R., Smith, R.T., Walsh, J.A., Thomas, B.H.: Spatial user interfaces for large-scale projector-based augmented reality. IEEE Comput. Graph. Appl. 34(6), 74–82 (2014)

    Google Scholar 

  17. Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. CRC Press (2005)

    Google Scholar 

  18. Erickson, A., Kim, K., Bruder, G., Welch, G.F.: Exploring the limitations of environment lighting on optical see-through head-mounted displays. In: Proceedings of the Symposium on Spatial User Interaction. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3385959.3418445

    Chapter  Google Scholar 

  19. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson (2020)

    MATH  Google Scholar 

  20. Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science. 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415

    Article  MATH  Google Scholar 

  21. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015)

    Google Scholar 

  22. Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab, N.: Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imaging Graph. 41, 55–60 (2015)

    Google Scholar 

  23. Ichihashi, K., Fujinami, K.: Estimating visibility of annotations for view management in spatial augmented reality based on machine-learning techniques. Sensors. 19(4), 939 (2019)

    Google Scholar 

  24. Sutanto, R.E., Pribadi, L., Lee, S.: 3D integral imaging based augmented reality with deep learning implemented by faster R-CNN. In: Proceedings of the International Conference on Mobile and Wireless Technology, pp. 241–247. Springer, Singapore (2017)

    Google Scholar 

  25. Hoppenstedt, B., Kammerer, K., Reichert, M., Spiliopoulou, M., Pryss, R.: Convolutional neural networks for image recognition in mixed reality using voice command labeling. In: Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 63–70. Springer, Santa Maria al Bagno (2019)

    Google Scholar 

  26. Huynh, B., Orlosky, J., Hollerer, T.: Semantic labeling and object registration for augmented reality language learning. In: Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 986–987. IEEE, Osaka (2019)

    Google Scholar 

  27. Lebeck, K., Cuervo, E., Philipose, M.: Collaborative Acceleration for Mixed Reality MSR-TR-2018-20. Microsoft (2018)

    Google Scholar 

  28. Ali, G., Le, H.-Q., Kim, J., Hwang, S.-W., Hwang, J.-I.: Design of seamless multi-modal interaction framework for intelligent virtual agents in wearable mixed reality environment. In: Proceedings of the International Conference on Computer Animation and Social Agents, pp. 47–52. Association for Computing Machinery (ACM) (2019)

    Google Scholar 

  29. Huang, B.-R., Lin, C.H., Lee, C.-H.: Mobile augmented reality based on cloud computing. In: Proceedings of the Anti-counterfeiting, Security, and Identification, pp. 1–5. IEEE, Taipei (2012)

    Google Scholar 

  30. Baddeley, A.D.: Human Memory: Theory and Practice. Psychology Press (1997)

    Google Scholar 

  31. Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)

    Google Scholar 

  32. Dempster, F.N.: Memory span: sources of individual and developmental differences. Psychol. Bull. 89(1), 63 (1981)

    Google Scholar 

  33. Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 63(2), 81 (1956)

    Google Scholar 

  34. Cowan, N.: The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)

    Google Scholar 

  35. Unsworth, N., Engle, R.W.: The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychol Rev. 114(1), 104 (2007)

    Google Scholar 

  36. Wang, Y., Ruhe, G.: The cognitive process of decision making. Int. J. Cognit. Informat. Nat. Intell. 1(2), 73–85 (2007)

    Google Scholar 

  37. Licklider, J.C.: Man-computer symbiosis. IRE Trans. Human Factors Electron. 1, 4–11 (1960)

    MATH  Google Scholar 

  38. Engelbart, D.C., English, W.K.: A research center for augmenting human intellect. In: Proceedings of the Fall Joint Computer Conference, pp. 395–410. Association for Computing Machinery (ACM), New York (1968)

    Google Scholar 

  39. Skagestad, P.: Thinking with machines: intelligence augmentation, evolutionary epistemology, and semiotic. J. Soc. Evol. Syst. 16(2), 157–180 (1993)

    Google Scholar 

  40. Lamming, M., Flynn, M.: Forget-me-not: intimate computing in support of human memory. In: Proceedings of the International Symposium on Next Generation Human Interface, vol. 4. Institute for Personalized Information Environment, Meguro Gajoen (1994)

    Google Scholar 

  41. Eldridge, M., Lamming, M., Flynn, M.: Does a video diary help recall? In: People and Computers, p. 257. Cambridge University Press (1992)

    Google Scholar 

  42. Lamming, M., Brown, P., Carter, K., Eldridge, M., Flynn, M., Louie, G., Robinson, P., Sellen, A.: The design of a human memory prosthesis. Comput. J. 37(3), 153–163 (1994)

    Google Scholar 

  43. Lamming, M.G., Newman, W.M.: Activity-based information retrieval: technology in support of personal memory. Proc. TETP Congr. 14, 68–81 (1992)

    Google Scholar 

  44. Rhodes, B.J.: The wearable remembrance agent: a system for augmented memory. Pers. Technol. 1(4), 218–224 (1997)

    Google Scholar 

  45. Wilson, B.A., Evans, J.J., Emslie, H., Malinek, V.: Evaluation of NeuroPage: a new memory aid. J. Neurol. Neurosurg. Psychiatry. 63(1), 113–115 (1997)

    Google Scholar 

  46. Tulving, E.: Elements of Episodic Memory. Clarendon Press (1983)

    Google Scholar 

  47. Morel, A., Bormans, K., Rombouts, K.: Memory palaces to improve quality of life in dementia. In: Proceedings of the Conference on Raising Awareness for the Societal and Environmental Role of Engineering and Training Engineers for Participatory Design (Engineering4Society), pp. 80–84. IEEE, Leuven (2015)

    Google Scholar 

  48. Firouzian, A., Asghar, Z., Tervonen, J., Pulli, P., Yamamoto, G.: Conceptual design and implementation of indicator-based Smart Glasses: a navigational device for remote assistance of senior citizens suffering from memory loss. In: Proceedings of the International Symposium on Medical Information and Communication Technology (TSMTCT), pp. 153–156. IEEE (2015). https://doi.org/10.1109/ISMICT.2015.7107518

    Chapter  Google Scholar 

  49. Way, T., Bemiller, A., Mysari, R., Reimers, C.: Using Google Glass and machine learning to assist people with memory deficiencies. In: Proceeding of the International Conference on Artificial Intelligence (ICAI), p. 571. CSREA Press, Las Vegas (2015)

    Google Scholar 

  50. Rosello, O., Exposito, M., Maes, P.: NeverMind: using augmented reality for memorization. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 215–216. ACM (2016)

    Google Scholar 

  51. Garzotto, F., Torelli, E., Vona, F., Aruanno, B.: HoloLearn: learning through mixed reality for people with cognitive disability. In: Proceedings of the IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 189–190. IEEE, Taichung (2018). https://doi.org/10.1109/AIVR.2018.00042

    Chapter  Google Scholar 

  52. Wallace, T., Morris, J.T.: Development and testing of EyeRemember: a memory aid app for wearables for people with brain injury. In: Miesenberger, K., Kouroupetroglou, G. (eds.) Computers Helping People with Special Needs, pp. 493–500. Springer International Publishing, Cham (2018)

    Google Scholar 

  53. Sonntag, D.: Kognit: intelligent cognitive enhancement technology by cognitive models and mixed reality for dementia patients. In: Proceedings of the AAAI Fall Symposium, pp. 47–53 (2015)

    Google Scholar 

  54. American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association (2013)

    Google Scholar 

  55. Aruanno, B., Garzotto, F., Rodriguez, M.C.: HoloLens-based mixed reality experiences for subjects with Alzheimer’s disease. In: Proceedings of the Biannual Conference on Italian SIGCHI Chapter. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3125571.3125589

    Chapter  Google Scholar 

  56. Rohrbach, N., Guide, P., Armstrong, A.R., Hartig, L., Abdelrazeq, A., Schroder, S., Neuse, J., Grimmer, T., Diehl-Schmid, J., Hermsdorfer, J.: An augmented reality approach for ADL support in Alzheimer’s disease: a crossover trial. J. Neuroeng. Rehabil. 16(1), 1–11 (2019)

    Google Scholar 

  57. Lea, G.: Chronometric analysis of the method of loci. J. Exp. Psychol. Human Percept. Perform. 1(2), 95 (1975)

    Google Scholar 

  58. Yamada, Y., Irie, K., Gushima, K., Ishizawa, F., Sada, M.A., Nakajima, T.: HoloMoL: human memory augmentation with mixed-reality technologies. In: Proceedings of the International Academic Mindtrek Conference, pp. 235–238. Association for Computing Machinery (ACM) (2017)

    Google Scholar 

  59. Paas, F.G., Van Merriënboer, J.J.: Instructional control of cognitive load in the training of complex cognitive tasks. Educ. Psychol. Rev. 6(4), 351–371 (1994)

    Google Scholar 

  60. Paas, F.G., Van Merriënboer, J.J., Adam, J.J.: Measurement of cognitive load in instructional research. Percept. Mot. Skills. 79(1), 419–430 (1994)

    Google Scholar 

  61. Van Merrienboer, J.J., Sweller, J.: Cognitive load theory and complex learning: recent developments and future directions. Educ. Psychol. Rev. 17(2), 147–177 (2005)

    Google Scholar 

  62. Engle, R.W.: Role of working-memory capacity in cognitive control. Curr. Anthropol. 51(S1), S17–S26 (2010)

    Google Scholar 

  63. Wierwille, W.W., Eggemeier, F.T.: Recommendations for mental workload measurement in a test and evaluation environment. Hum. Factors. 35(2), 263–281 (1993)

    Google Scholar 

  64. Wierwille, W.W., Casali, J.G.: A validated rating scale for global mental workload measurement applications. In: Proceedings of the Human Factors Society Annual Meeting, vol. 27, pp. 129–133. SAGE, Los Angeles (1983)

    Google Scholar 

  65. Reid, G.B., Eggemeier, F.T., Shingledecker, C.A.: Subjective Workload Assessment Technique. Air Force Flight Test Center Edwards AFB CA (1982)

    Google Scholar 

  66. Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, vol. 52, pp. 139–183. North-Holland (1988)

    Google Scholar 

  67. Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)

    Google Scholar 

  68. Hammond, S.: Using psychometric tests. Res. Methods Psychol. 3, 182–209 (2006)

    Google Scholar 

  69. Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Skills. 47(2), 599–604 (1978)

    Google Scholar 

  70. Hanning, C.: Postoperative cognitive dysfunction. Br. J. Anaesth. 95(1), 82–87 (2005)

    Google Scholar 

  71. Cummings, M., Myers, K., Scott, S.D.: Modified Cooper Harper evaluation tool for unmanned vehicle displays. In: Proceedings of the UVS Canada: Conference on Unmanned Vehicle Systems Canada. Unmanned Systems Canada, Montebello (2006)

    Google Scholar 

  72. Luximon, A., Goonetilleke, R.S.: Simplified subjective workload assessment technique. Ergonomics. 44(3), 229–243 (2001)

    Google Scholar 

  73. Bean, J.: Rey auditory verbal learning test, Rey AVLT. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.) Encyclopedia of Clinical Neuropsychology, pp. 2174–2175. Springer, New York (2011)

    Google Scholar 

  74. Arbuthnott, K., Frank, J.: Trail making test: part B as a measure of executive control: validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 22(4), 518–528 (2000). http://doi.org/10.1076/1380–3395(200008)22:4;1–0;FT518

    Google Scholar 

  75. Ostrosky-Sol’s, F., Lozano, A.: Digit span: effect of education and culture. Int. J. Psychol. 41(5), 333–341 (2006). https://doi.org/10.1080/00207590500345724

    Article  Google Scholar 

  76. Scarpina, F., Tagini, S.: The Stroop color and word test. Front. Psychol. 8, 557 (2017). https://doi.org/10.3389/fpsyg.2017.00557

    Article  Google Scholar 

  77. John, M.S., Kobus, D.A., Morrison, J.G., Schmorrow, D.: Overview of the DARPA augmented cognition technical integration experiment. Int. J. Human Comput. Interact. 17(2), 131–149 (2004)

    Google Scholar 

  78. Schmorrow, D.D., Kruse, A.A.: DARPA’s Augmented Cognition Program: tomorrow’s human computer interaction from vision to reality: building cognitively aware computational systems. In: Proceedings of the IEEE Conference on Human Factors and Power Plants, pp. 1–7. IEEE, Scottsdale (2002). https://doi.org/10.1109/HFPP.2002.1042859

    Chapter  Google Scholar 

  79. de Melo, C.M., Kim, K., Norouzi, N., Bruder, G., Welch, G.: Reducing cognitive load and improving warfighter problem solving with intelligent virtual assistants. Front. Psychol. 11, 3170 (2020). https://doi.org/10.3389/fpsyg.2020.554706

    Article  Google Scholar 

  80. Atici-Ulusu, H., Ikiz, Y.D., Taskapilioglu, O., Gunduz, T.: Effects of augmented reality glasses on the cognitive load of assembly operators in the automotive industry. Int. J. Comput. Integr. Manuf. 34(5), 487–499 (2021)

    Google Scholar 

  81. Leppink, J., Paas, F., van Gog, T., van der Vleuten, C.P., van Merriënboer, J.J.: Effects of pairs of problems and examples on task performance and different types of cognitive load. Learn. Instr. 30, 32–42 (2014). https://doi.org/10.1016/j.learninstruc.2013.12.001

    Article  Google Scholar 

  82. Mayer, R.E., Moreno, R.: A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. J. Educ. Psychol. 90(2), 312 (1998)

    Google Scholar 

  83. Thees, M., Kapp, S., Strzys, M.P., Beil, F., Lukowicz, P., Kuhn, J.: Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 108, 106316 (2020). https://doi.org/10.1016/j.chb.2020.106316

    Article  Google Scholar 

  84. Doswell, J.T., Skinner, A.: Augmenting human cognition with adaptive augmented reality. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Proceedings of the Foundations of Augmented Cognition. Advancing Human Performance and Decision-Making through Adaptive Systems, pp. 104–113. Springer, Cham (2014)

    Google Scholar 

  85. Ikiz, Y.D., Atici-Ulusu, H., Taskapilioglu, O., Gunduz, T.: Usage of augmented reality glasses in automotive industry: age-related effects on cognitive load. Int. J. Recent Technol. Eng. 8(3), 1–6 (2019)

    Google Scholar 

  86. Erickson, A., Zi, N., Kim, K., Schubert, R., Jules, J., LaViola, J.J., Bruder, G., Welch, G.F.: Sharing gaze rays for visual target identification tasks in collaborative augmented reality. J. Multimodal User Interf. 14(4), 353–371 (2020)

    Google Scholar 

  87. Norouzi, N., Erickson, A., Kim, K., Schubert, R., LaViola, J., Bruder, G., Welch, G.: Effects of shared gaze parameters on visual target identification task performance in augmented reality. In: Proceedings of the ACM Conference on Spatial User Interaction, pp. 1–11. Association for Computing Machinery, New Orleans (2019). https://doi.org/10.1145/3357251.3357587

    Chapter  Google Scholar 

  88. Buegler, M., Harms, R.L., Balasa, M., Meier, I.B., Exarchos, T., Rai, L., Boyle, R., Tort, A., Kozori, M., Lazarou, E.: Digital biomarker-based individualized prognosis for people at risk of dementia. Alzheimers Dement. 12(1), e12073 (2020)

    Google Scholar 

  89. Qiong, O.U.: A brief introduction to perception. Stud. Lit. Lang. 15(4), 18–28 (2017). https://doi.org/10.3968/1005

    Article  Google Scholar 

  90. Ffytche, D.H., Blom, J.D., Catani, M.: Disorders of visual perception. J. Neurol. Neurosurg. Psychiatry. 81(11), 1280–1287 (2010). https://doi.org/10.1136/jnnp.2008.171348

    Article  Google Scholar 

  91. Tippett, L.J., Miller, L.A., Farah, M.J.: Prosopamnesia: a selective impairment in face learning. Cogn. Neuropsychol. 17(1–3), 241–255 (2000)

    Google Scholar 

  92. Farah, M.J.: Visual Agnosia. MIT Press (2004)

    Google Scholar 

  93. Neumann, K., Stephens, D.: Definitions of types of hearing impairment: a discussion paper. Folia Phoniatr. Logop. 63(1), 43–48 (2011). https://doi.org/10.1159/000316412

    Article  Google Scholar 

  94. Van Lancker, D.R., Cummings, J.L., Kreiman, J., Dobkin, B.H.: Phonagnosia: a dissociation between familiar and unfamiliar voices. Cortex. 24(2), 195–209 (1988)

    Google Scholar 

  95. Collins, C.C.: On mobility aids for the blind. In: Electronic Spatial Sensing for the Blind, pp. 35–64. Springer (1985)

    Google Scholar 

  96. Liu, Y., Stiles, N.R., Meister, M.: Augmented reality powers a cognitive assistant for the blind. eLife. 7, e37841 (2018). https://doi.org/10.7554/eLife.37841

    Article  Google Scholar 

  97. Hirzer, M.: Marker detection for augmented reality applications. Comput. Graph. Vis. TUG 25 (2008). https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/hirzer_tr_2008.pdf

    Google Scholar 

  98. Seeing with Sound. https://www.seeingwithsound.com/. Accessed 22 Jan 2021

  99. Coughlan, J.M., Shen, H., Biggs, B.: Towards accessible audio labeling of 3D objects. J. Technol. Persons Disabilit. 8, 210 (2020)

    Google Scholar 

  100. Real, S., Araujo, A.: VES: a mixed-reality system to assist multisensory spatial perception and cognition for blind and visually impaired people. Appl. Sci. 10(2) (2020). https://doi.org/10.3390/app10020523

  101. Márquez-Olivera, M., Juárez-Gracia, A.-G., Hernández-Herrera, V., Argüelles-Cruz, A.-J., López-Yáñez, I.: System for face recognition under different facial expressions using a new associative hybrid model Amαβ-KNN for people with visual impairment or prosopagnosia. Sensors. 19(3), 578 (2019)

    Google Scholar 

  102. Xu, Q., Chia, S.C., Mandal, B., Li, L., Lim, J.-H., Mukawa, M.A., Tan, C.: SocioGlass: social interaction assistance with face recognition on Google Glass. Sci. Phone Apps Mobile Dev. 2(1), 7 (2016)

    Google Scholar 

  103. Dai, S., Arechiga, N., Lin, C.-W., Shiraishi, S.: Augmented reality vehicular assistance for color blindness, US Patent (7 January 2020)

    Google Scholar 

  104. Wang, X.-Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Pattern Recogn. 44(4), 777–787 (2011)

    MATH  Google Scholar 

  105. Langlotz, T., Sutton, J., Zollmann, S., Itoh, Y., Regenbrecht, H.: ChromaGlasses: computational glasses for compensating colour blindness. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–12. Association for Computing Machinery, New York (2018)

    Google Scholar 

  106. Fuller, T.L., Sadovnik, A.: Image level color classification for colorblind assistance. In: Proceedings of the JEFF International Conference on Image Processing (ICIP), pp. 1985–1989. IEEE, Easton (2017). https://doi.org/10.1109/ICIP.2017.8296629

    Chapter  Google Scholar 

  107. McKelvey, C., Dreyer, R., Zhu, D., Wang, W., Quarles, J.: Energy-oriented designs of an augmented-reality application on a VUZIX Blade smart glass. In: Proceedings of the IFFF International Green and Sustainable Computing Conference (IGSC), pp. 1–8. IEEE, Alexandria (2019)

    Google Scholar 

  108. Pajorová, E., Hluchý, L.: Augmented reality as a higher education form for students with delimited ability. In: Uskov, V.L., Howlett, R.J., Jain, L.C. (eds.) Smart Education and e-Learning 2019, pp. 461–469. Springer, Singapore (2019)

    Google Scholar 

  109. Kiss, F., Woundefinedniak, P.W., Biener, V., Knierim, P., Schmidt, A.: VUM: understanding requirements for a virtual ubiquitous microscope. In: Proceedings of the International Conference on Mobile and Ubiquitous Multimedia, pp. 259–266. Association for Computing Machinery, Essen (2020)

    Google Scholar 

  110. Younis, O., Al-Nuaimy, W., Alomari, M.H., Rowe, F.: A hazard detection and tracking system for people with peripheral vision loss using smart glasses and augmented reality. Int. J. Adv. Comput. Sci. Appl. 10(2), 1 (2019). https://doi.org/10.14569/IJACSA.2019.0100201

    Article  Google Scholar 

  111. Wiener, J.M., Büchner, S.J., Holscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognit. Comput. 9(2), 152–165 (2009)

    Google Scholar 

  112. Jacobson, R.D.: Cognitive mapping without sight: four preliminary studies of spatial learning. J. Environ. Psychol. 18(3), 289–305 (1998)

    Google Scholar 

  113. Freksa, C., Klippel, A., Winter, S.: A cognitive perspective on spatial context. In: Proceedings of the Dagstuhl Seminar. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik (2007)

    Google Scholar 

  114. Li, L., Xu, Q., Chandrasekhar, V., Lim, J.-H., Tan, C., Mukawa, M.A.: A wearable virtual usher for vision-based cognitive indoor navigation. IEEE Trans. Cybernet. 47(4), 841–854 (2016)

    Google Scholar 

  115. Mehra, R., Brimijoin, O., Robinson, P., Lunner, T.: Potential of augmented reality platforms to improve individual hearing aids and to support more ecologically valid research. Ear Hear. 41, 140S–146S (2020)

    Google Scholar 

  116. Berger, A., Kostak, M., Maly, F.: Mobile AR solution for deaf people. In: Awan, I., Younas, M., Ünal, P., Aleksy, M. (eds.) Mobile Web and Intelligent Information Systems, pp. 243–254. Springer, Cham (2019)

    Google Scholar 

  117. Roesner, F., Kohno, T., Molnar, D.: Security and privacy for augmented reality systems. Commun. ACM. 57(4), 88–96 (2014). https://doi.org/10.1145/2580723.2580730

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huseyin Atakan Varol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Makhataeva, Z., Akhmetov, T., Varol, H.A. (2023). Augmented Reality for Cognitive Impairments. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-67822-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-67821-0

  • Online ISBN: 978-3-030-67822-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics