Abstract
Augmented reality (AR) is a rapidly developing technology that has introduced new approaches for the design of human technology interaction in various fields. However, application of AR in the area of assistive systems for cognitively impaired people is not deeply studied yet. In this chapter, we investigate the state of the art of AR in assistive systems for the cognitively impaired. Specifically, we will investigate the role of AR during the design, implementation, and performance assessment of perception and memory augmentation assistive systems. We start with a summary of various technologies utilized for the development of AR systems, including sensor and camera technology, data visualization methods, computing paradigms, and intelligent data processing algorithms. Then, we discuss the fundamental mechanisms behind human memory system and look at the examples of the first technology-based human memory and intelligence augmentation systems. We overview various methods for estimation of the human cognitive state and mental workload utilized during the evaluations of such assistive systems in human involved experimental studies. Our main objective in this work is to find out the current status, challenges, and future perspectives of AR in the research of human memory and perception augmentation systems for the people with cognitive impairments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World Bank Group. https://www.worldbank.org/en/topic/mental-health. Accessed 22 Jan 2021
Patel, V., Chisholm, D., Parikh, R., Charlson, F.J., Degenhardt, L., Dua, T., Ferrari, A.J., Hyman, S., Laxminarayan, R., Levin, C.: Addressing the burden of mental, neurological, and substance use disorders: key messages from disease control priorities. Lancet. 387(10028), 1672–1685 (2016)
Lancioni, G.E., Sigafoos, J., O’Reilly, M.F., Singh, N.N.: Assistive Technology: Interventions for Individuals with Severe/Profound and Multiple Disabilities. Springer Science & Business Media (2012)
Ong, S.K., Shen, Y., Zhang, J., Nee, A.Y.C.: Augmented reality in assistive technology and rehabilitation engineering. In: Furht, B. (ed.) Handbook of Augmented Reality, pp. 603–630. Springer, New York (2011)
Leo, M., Medioni, G., Trivedi, M., Kanade, T., Farinella, G.M.: Computer vision for assistive technologies. Comput. Vis. Image Underst. 154, 1–15 (2017)
Azuma, R.T.: A survey of augmented reality. Presence Teleop. Virt. Environ. 6(4), 355–385 (1997)
Sutherland, I.E.: The ultimate display. In: Proceedings of the International Federation of Information Processing Congress (1F1P), pp. 506–508. Macmillan and Co, London (1965)
Wade, N.J.: Charles Wheatstone (1802–1875). SAGE, London (2002)
Makhataeva, Z., Varol, H.A.: Augmented reality for robotics: a review. Robotics. 9(2), 21 (2020)
NASA. https://www.nasa.gov/feature/ames/augmented-reality-air-traffic-management. Accessed 22 Jan 2021
Xiao, C., Lifeng, Z.: Implementation of mobile augmented reality based on Vuforia and Rawajali. In: Proceedings of the 1FFF International Conference on Software Engineering and Service Science, pp. 912–915. IEEE, Beijing (2014)
Hübner, P., Weinmann, M., Wursthorn, S.: Marker-based localization of the Microsoft Hololens in building models. Int. Arch. Photogramm. Remote Sens. Spatial Informat. Sci. 42(1), 195 (2018)
Rekimoto, J.: Matrix: a realtime object identification and registration method for augmented reality. In: Proceedings of the IEEE Asia Pacific Computer Human Interaction, pp. 63–68. IEEE, Shonan Village Center (1998)
Lin, C.-H., Chung, Y., Chou, B.-Y., Chen, H.-Y., Tsai, C.-Y.: A novel campus navigation app with augmented reality and deep learning. In: Proceedings of the IEEE International Conference on Applied System Invention (ICASI), pp. 1075–1077. IEEE, Chiba (2018)
Ren, P., Qiao, X., Huang, Y., Liu, L., Dustdar, S., Chen, J.: Edge-assisted distributed DNN collaborative computing approach for mobile Web augmented reality in 5G networks. IEEE Netw. 34(2), 254–261 (2020). https://doi.org/10.1109/MNET.011.1900305
Marner, M.R., Smith, R.T., Walsh, J.A., Thomas, B.H.: Spatial user interfaces for large-scale projector-based augmented reality. IEEE Comput. Graph. Appl. 34(6), 74–82 (2014)
Bimber, O., Raskar, R.: Spatial Augmented Reality: Merging Real and Virtual Worlds. CRC Press (2005)
Erickson, A., Kim, K., Bruder, G., Welch, G.F.: Exploring the limitations of environment lighting on optical see-through head-mounted displays. In: Proceedings of the Symposium on Spatial User Interaction. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/3385959.3418445
Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 4th edn. Pearson (2020)
Jordan, M.I., Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science. 349(6245), 255–260 (2015). https://doi.org/10.1126/science.aaa8415
LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature. 521(7553), 436–444 (2015)
Pauly, O., Diotte, B., Fallavollita, P., Weidert, S., Euler, E., Navab, N.: Machine learning-based augmented reality for improved surgical scene understanding. Comput. Med. Imaging Graph. 41, 55–60 (2015)
Ichihashi, K., Fujinami, K.: Estimating visibility of annotations for view management in spatial augmented reality based on machine-learning techniques. Sensors. 19(4), 939 (2019)
Sutanto, R.E., Pribadi, L., Lee, S.: 3D integral imaging based augmented reality with deep learning implemented by faster R-CNN. In: Proceedings of the International Conference on Mobile and Wireless Technology, pp. 241–247. Springer, Singapore (2017)
Hoppenstedt, B., Kammerer, K., Reichert, M., Spiliopoulou, M., Pryss, R.: Convolutional neural networks for image recognition in mixed reality using voice command labeling. In: Proceedings of the International Conference on Augmented Reality, Virtual Reality and Computer Graphics, pp. 63–70. Springer, Santa Maria al Bagno (2019)
Huynh, B., Orlosky, J., Hollerer, T.: Semantic labeling and object registration for augmented reality language learning. In: Proceedings of the IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 986–987. IEEE, Osaka (2019)
Lebeck, K., Cuervo, E., Philipose, M.: Collaborative Acceleration for Mixed Reality MSR-TR-2018-20. Microsoft (2018)
Ali, G., Le, H.-Q., Kim, J., Hwang, S.-W., Hwang, J.-I.: Design of seamless multi-modal interaction framework for intelligent virtual agents in wearable mixed reality environment. In: Proceedings of the International Conference on Computer Animation and Social Agents, pp. 47–52. Association for Computing Machinery (ACM) (2019)
Huang, B.-R., Lin, C.H., Lee, C.-H.: Mobile augmented reality based on cloud computing. In: Proceedings of the Anti-counterfeiting, Security, and Identification, pp. 1–5. IEEE, Taipei (2012)
Baddeley, A.D.: Human Memory: Theory and Practice. Psychology Press (1997)
Sweller, J., Van Merrienboer, J.J., Paas, F.G.: Cognitive architecture and instructional design. Educ. Psychol. Rev. 10(3), 251–296 (1998)
Dempster, F.N.: Memory span: sources of individual and developmental differences. Psychol. Bull. 89(1), 63 (1981)
Miller, G.A.: The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev. 63(2), 81 (1956)
Cowan, N.: The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)
Unsworth, N., Engle, R.W.: The nature of individual differences in working memory capacity: active maintenance in primary memory and controlled search from secondary memory. Psychol Rev. 114(1), 104 (2007)
Wang, Y., Ruhe, G.: The cognitive process of decision making. Int. J. Cognit. Informat. Nat. Intell. 1(2), 73–85 (2007)
Licklider, J.C.: Man-computer symbiosis. IRE Trans. Human Factors Electron. 1, 4–11 (1960)
Engelbart, D.C., English, W.K.: A research center for augmenting human intellect. In: Proceedings of the Fall Joint Computer Conference, pp. 395–410. Association for Computing Machinery (ACM), New York (1968)
Skagestad, P.: Thinking with machines: intelligence augmentation, evolutionary epistemology, and semiotic. J. Soc. Evol. Syst. 16(2), 157–180 (1993)
Lamming, M., Flynn, M.: Forget-me-not: intimate computing in support of human memory. In: Proceedings of the International Symposium on Next Generation Human Interface, vol. 4. Institute for Personalized Information Environment, Meguro Gajoen (1994)
Eldridge, M., Lamming, M., Flynn, M.: Does a video diary help recall? In: People and Computers, p. 257. Cambridge University Press (1992)
Lamming, M., Brown, P., Carter, K., Eldridge, M., Flynn, M., Louie, G., Robinson, P., Sellen, A.: The design of a human memory prosthesis. Comput. J. 37(3), 153–163 (1994)
Lamming, M.G., Newman, W.M.: Activity-based information retrieval: technology in support of personal memory. Proc. TETP Congr. 14, 68–81 (1992)
Rhodes, B.J.: The wearable remembrance agent: a system for augmented memory. Pers. Technol. 1(4), 218–224 (1997)
Wilson, B.A., Evans, J.J., Emslie, H., Malinek, V.: Evaluation of NeuroPage: a new memory aid. J. Neurol. Neurosurg. Psychiatry. 63(1), 113–115 (1997)
Tulving, E.: Elements of Episodic Memory. Clarendon Press (1983)
Morel, A., Bormans, K., Rombouts, K.: Memory palaces to improve quality of life in dementia. In: Proceedings of the Conference on Raising Awareness for the Societal and Environmental Role of Engineering and Training Engineers for Participatory Design (Engineering4Society), pp. 80–84. IEEE, Leuven (2015)
Firouzian, A., Asghar, Z., Tervonen, J., Pulli, P., Yamamoto, G.: Conceptual design and implementation of indicator-based Smart Glasses: a navigational device for remote assistance of senior citizens suffering from memory loss. In: Proceedings of the International Symposium on Medical Information and Communication Technology (TSMTCT), pp. 153–156. IEEE (2015). https://doi.org/10.1109/ISMICT.2015.7107518
Way, T., Bemiller, A., Mysari, R., Reimers, C.: Using Google Glass and machine learning to assist people with memory deficiencies. In: Proceeding of the International Conference on Artificial Intelligence (ICAI), p. 571. CSREA Press, Las Vegas (2015)
Rosello, O., Exposito, M., Maes, P.: NeverMind: using augmented reality for memorization. In: Proceedings of the 29th Annual Symposium on User Interface Software and Technology, pp. 215–216. ACM (2016)
Garzotto, F., Torelli, E., Vona, F., Aruanno, B.: HoloLearn: learning through mixed reality for people with cognitive disability. In: Proceedings of the IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), pp. 189–190. IEEE, Taichung (2018). https://doi.org/10.1109/AIVR.2018.00042
Wallace, T., Morris, J.T.: Development and testing of EyeRemember: a memory aid app for wearables for people with brain injury. In: Miesenberger, K., Kouroupetroglou, G. (eds.) Computers Helping People with Special Needs, pp. 493–500. Springer International Publishing, Cham (2018)
Sonntag, D.: Kognit: intelligent cognitive enhancement technology by cognitive models and mixed reality for dementia patients. In: Proceedings of the AAAI Fall Symposium, pp. 47–53 (2015)
American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, 5th edn. American Psychiatric Association (2013)
Aruanno, B., Garzotto, F., Rodriguez, M.C.: HoloLens-based mixed reality experiences for subjects with Alzheimer’s disease. In: Proceedings of the Biannual Conference on Italian SIGCHI Chapter. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3125571.3125589
Rohrbach, N., Guide, P., Armstrong, A.R., Hartig, L., Abdelrazeq, A., Schroder, S., Neuse, J., Grimmer, T., Diehl-Schmid, J., Hermsdorfer, J.: An augmented reality approach for ADL support in Alzheimer’s disease: a crossover trial. J. Neuroeng. Rehabil. 16(1), 1–11 (2019)
Lea, G.: Chronometric analysis of the method of loci. J. Exp. Psychol. Human Percept. Perform. 1(2), 95 (1975)
Yamada, Y., Irie, K., Gushima, K., Ishizawa, F., Sada, M.A., Nakajima, T.: HoloMoL: human memory augmentation with mixed-reality technologies. In: Proceedings of the International Academic Mindtrek Conference, pp. 235–238. Association for Computing Machinery (ACM) (2017)
Paas, F.G., Van Merriënboer, J.J.: Instructional control of cognitive load in the training of complex cognitive tasks. Educ. Psychol. Rev. 6(4), 351–371 (1994)
Paas, F.G., Van Merriënboer, J.J., Adam, J.J.: Measurement of cognitive load in instructional research. Percept. Mot. Skills. 79(1), 419–430 (1994)
Van Merrienboer, J.J., Sweller, J.: Cognitive load theory and complex learning: recent developments and future directions. Educ. Psychol. Rev. 17(2), 147–177 (2005)
Engle, R.W.: Role of working-memory capacity in cognitive control. Curr. Anthropol. 51(S1), S17–S26 (2010)
Wierwille, W.W., Eggemeier, F.T.: Recommendations for mental workload measurement in a test and evaluation environment. Hum. Factors. 35(2), 263–281 (1993)
Wierwille, W.W., Casali, J.G.: A validated rating scale for global mental workload measurement applications. In: Proceedings of the Human Factors Society Annual Meeting, vol. 27, pp. 129–133. SAGE, Los Angeles (1983)
Reid, G.B., Eggemeier, F.T., Shingledecker, C.A.: Subjective Workload Assessment Technique. Air Force Flight Test Center Edwards AFB CA (1982)
Hart, S.G., Staveland, L.E.: Development of NASA-TLX (Task Load Index): results of empirical and theoretical research. In: Hancock, P.A., Meshkati, N. (eds.) Human Mental Workload, Advances in Psychology, vol. 52, pp. 139–183. North-Holland (1988)
Paas, F., Tuovinen, J.E., Tabbers, H., Van Gerven, P.W.: Cognitive load measurement as a means to advance cognitive load theory. Educ. Psychol. 38(1), 63–71 (2003)
Hammond, S.: Using psychometric tests. Res. Methods Psychol. 3, 182–209 (2006)
Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Skills. 47(2), 599–604 (1978)
Hanning, C.: Postoperative cognitive dysfunction. Br. J. Anaesth. 95(1), 82–87 (2005)
Cummings, M., Myers, K., Scott, S.D.: Modified Cooper Harper evaluation tool for unmanned vehicle displays. In: Proceedings of the UVS Canada: Conference on Unmanned Vehicle Systems Canada. Unmanned Systems Canada, Montebello (2006)
Luximon, A., Goonetilleke, R.S.: Simplified subjective workload assessment technique. Ergonomics. 44(3), 229–243 (2001)
Bean, J.: Rey auditory verbal learning test, Rey AVLT. In: Kreutzer, J.S., DeLuca, J., Caplan, B. (eds.) Encyclopedia of Clinical Neuropsychology, pp. 2174–2175. Springer, New York (2011)
Arbuthnott, K., Frank, J.: Trail making test: part B as a measure of executive control: validation using a set-switching paradigm. J. Clin. Exp. Neuropsychol. 22(4), 518–528 (2000). http://doi.org/10.1076/1380–3395(200008)22:4;1–0;FT518
Ostrosky-Sol’s, F., Lozano, A.: Digit span: effect of education and culture. Int. J. Psychol. 41(5), 333–341 (2006). https://doi.org/10.1080/00207590500345724
Scarpina, F., Tagini, S.: The Stroop color and word test. Front. Psychol. 8, 557 (2017). https://doi.org/10.3389/fpsyg.2017.00557
John, M.S., Kobus, D.A., Morrison, J.G., Schmorrow, D.: Overview of the DARPA augmented cognition technical integration experiment. Int. J. Human Comput. Interact. 17(2), 131–149 (2004)
Schmorrow, D.D., Kruse, A.A.: DARPA’s Augmented Cognition Program: tomorrow’s human computer interaction from vision to reality: building cognitively aware computational systems. In: Proceedings of the IEEE Conference on Human Factors and Power Plants, pp. 1–7. IEEE, Scottsdale (2002). https://doi.org/10.1109/HFPP.2002.1042859
de Melo, C.M., Kim, K., Norouzi, N., Bruder, G., Welch, G.: Reducing cognitive load and improving warfighter problem solving with intelligent virtual assistants. Front. Psychol. 11, 3170 (2020). https://doi.org/10.3389/fpsyg.2020.554706
Atici-Ulusu, H., Ikiz, Y.D., Taskapilioglu, O., Gunduz, T.: Effects of augmented reality glasses on the cognitive load of assembly operators in the automotive industry. Int. J. Comput. Integr. Manuf. 34(5), 487–499 (2021)
Leppink, J., Paas, F., van Gog, T., van der Vleuten, C.P., van Merriënboer, J.J.: Effects of pairs of problems and examples on task performance and different types of cognitive load. Learn. Instr. 30, 32–42 (2014). https://doi.org/10.1016/j.learninstruc.2013.12.001
Mayer, R.E., Moreno, R.: A split-attention effect in multimedia learning: evidence for dual processing systems in working memory. J. Educ. Psychol. 90(2), 312 (1998)
Thees, M., Kapp, S., Strzys, M.P., Beil, F., Lukowicz, P., Kuhn, J.: Effects of augmented reality on learning and cognitive load in university physics laboratory courses. Comput. Hum. Behav. 108, 106316 (2020). https://doi.org/10.1016/j.chb.2020.106316
Doswell, J.T., Skinner, A.: Augmenting human cognition with adaptive augmented reality. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) Proceedings of the Foundations of Augmented Cognition. Advancing Human Performance and Decision-Making through Adaptive Systems, pp. 104–113. Springer, Cham (2014)
Ikiz, Y.D., Atici-Ulusu, H., Taskapilioglu, O., Gunduz, T.: Usage of augmented reality glasses in automotive industry: age-related effects on cognitive load. Int. J. Recent Technol. Eng. 8(3), 1–6 (2019)
Erickson, A., Zi, N., Kim, K., Schubert, R., Jules, J., LaViola, J.J., Bruder, G., Welch, G.F.: Sharing gaze rays for visual target identification tasks in collaborative augmented reality. J. Multimodal User Interf. 14(4), 353–371 (2020)
Norouzi, N., Erickson, A., Kim, K., Schubert, R., LaViola, J., Bruder, G., Welch, G.: Effects of shared gaze parameters on visual target identification task performance in augmented reality. In: Proceedings of the ACM Conference on Spatial User Interaction, pp. 1–11. Association for Computing Machinery, New Orleans (2019). https://doi.org/10.1145/3357251.3357587
Buegler, M., Harms, R.L., Balasa, M., Meier, I.B., Exarchos, T., Rai, L., Boyle, R., Tort, A., Kozori, M., Lazarou, E.: Digital biomarker-based individualized prognosis for people at risk of dementia. Alzheimers Dement. 12(1), e12073 (2020)
Qiong, O.U.: A brief introduction to perception. Stud. Lit. Lang. 15(4), 18–28 (2017). https://doi.org/10.3968/1005
Ffytche, D.H., Blom, J.D., Catani, M.: Disorders of visual perception. J. Neurol. Neurosurg. Psychiatry. 81(11), 1280–1287 (2010). https://doi.org/10.1136/jnnp.2008.171348
Tippett, L.J., Miller, L.A., Farah, M.J.: Prosopamnesia: a selective impairment in face learning. Cogn. Neuropsychol. 17(1–3), 241–255 (2000)
Farah, M.J.: Visual Agnosia. MIT Press (2004)
Neumann, K., Stephens, D.: Definitions of types of hearing impairment: a discussion paper. Folia Phoniatr. Logop. 63(1), 43–48 (2011). https://doi.org/10.1159/000316412
Van Lancker, D.R., Cummings, J.L., Kreiman, J., Dobkin, B.H.: Phonagnosia: a dissociation between familiar and unfamiliar voices. Cortex. 24(2), 195–209 (1988)
Collins, C.C.: On mobility aids for the blind. In: Electronic Spatial Sensing for the Blind, pp. 35–64. Springer (1985)
Liu, Y., Stiles, N.R., Meister, M.: Augmented reality powers a cognitive assistant for the blind. eLife. 7, e37841 (2018). https://doi.org/10.7554/eLife.37841
Hirzer, M.: Marker detection for augmented reality applications. Comput. Graph. Vis. TUG 25 (2008). https://www.tugraz.at/fileadmin/user_upload/Institute/ICG/Documents/lrs/pubs/hirzer_tr_2008.pdf
Seeing with Sound. https://www.seeingwithsound.com/. Accessed 22 Jan 2021
Coughlan, J.M., Shen, H., Biggs, B.: Towards accessible audio labeling of 3D objects. J. Technol. Persons Disabilit. 8, 210 (2020)
Real, S., Araujo, A.: VES: a mixed-reality system to assist multisensory spatial perception and cognition for blind and visually impaired people. Appl. Sci. 10(2) (2020). https://doi.org/10.3390/app10020523
Márquez-Olivera, M., Juárez-Gracia, A.-G., Hernández-Herrera, V., Argüelles-Cruz, A.-J., López-Yáñez, I.: System for face recognition under different facial expressions using a new associative hybrid model Amαβ-KNN for people with visual impairment or prosopagnosia. Sensors. 19(3), 578 (2019)
Xu, Q., Chia, S.C., Mandal, B., Li, L., Lim, J.-H., Mukawa, M.A., Tan, C.: SocioGlass: social interaction assistance with face recognition on Google Glass. Sci. Phone Apps Mobile Dev. 2(1), 7 (2016)
Dai, S., Arechiga, N., Lin, C.-W., Shiraishi, S.: Augmented reality vehicular assistance for color blindness, US Patent (7 January 2020)
Wang, X.-Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Pattern Recogn. 44(4), 777–787 (2011)
Langlotz, T., Sutton, J., Zollmann, S., Itoh, Y., Regenbrecht, H.: ChromaGlasses: computational glasses for compensating colour blindness. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–12. Association for Computing Machinery, New York (2018)
Fuller, T.L., Sadovnik, A.: Image level color classification for colorblind assistance. In: Proceedings of the JEFF International Conference on Image Processing (ICIP), pp. 1985–1989. IEEE, Easton (2017). https://doi.org/10.1109/ICIP.2017.8296629
McKelvey, C., Dreyer, R., Zhu, D., Wang, W., Quarles, J.: Energy-oriented designs of an augmented-reality application on a VUZIX Blade smart glass. In: Proceedings of the IFFF International Green and Sustainable Computing Conference (IGSC), pp. 1–8. IEEE, Alexandria (2019)
Pajorová, E., Hluchý, L.: Augmented reality as a higher education form for students with delimited ability. In: Uskov, V.L., Howlett, R.J., Jain, L.C. (eds.) Smart Education and e-Learning 2019, pp. 461–469. Springer, Singapore (2019)
Kiss, F., Woundefinedniak, P.W., Biener, V., Knierim, P., Schmidt, A.: VUM: understanding requirements for a virtual ubiquitous microscope. In: Proceedings of the International Conference on Mobile and Ubiquitous Multimedia, pp. 259–266. Association for Computing Machinery, Essen (2020)
Younis, O., Al-Nuaimy, W., Alomari, M.H., Rowe, F.: A hazard detection and tracking system for people with peripheral vision loss using smart glasses and augmented reality. Int. J. Adv. Comput. Sci. Appl. 10(2), 1 (2019). https://doi.org/10.14569/IJACSA.2019.0100201
Wiener, J.M., Büchner, S.J., Holscher, C.: Taxonomy of human wayfinding tasks: a knowledge-based approach. Spatial Cognit. Comput. 9(2), 152–165 (2009)
Jacobson, R.D.: Cognitive mapping without sight: four preliminary studies of spatial learning. J. Environ. Psychol. 18(3), 289–305 (1998)
Freksa, C., Klippel, A., Winter, S.: A cognitive perspective on spatial context. In: Proceedings of the Dagstuhl Seminar. Schloss Dagstuhl-Leibniz-Zentrum fur Informatik (2007)
Li, L., Xu, Q., Chandrasekhar, V., Lim, J.-H., Tan, C., Mukawa, M.A.: A wearable virtual usher for vision-based cognitive indoor navigation. IEEE Trans. Cybernet. 47(4), 841–854 (2016)
Mehra, R., Brimijoin, O., Robinson, P., Lunner, T.: Potential of augmented reality platforms to improve individual hearing aids and to support more ecologically valid research. Ear Hear. 41, 140S–146S (2020)
Berger, A., Kostak, M., Maly, F.: Mobile AR solution for deaf people. In: Awan, I., Younas, M., Ünal, P., Aleksy, M. (eds.) Mobile Web and Intelligent Information Systems, pp. 243–254. Springer, Cham (2019)
Roesner, F., Kohno, T., Molnar, D.: Security and privacy for augmented reality systems. Commun. ACM. 57(4), 88–96 (2014). https://doi.org/10.1145/2580723.2580730
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Makhataeva, Z., Akhmetov, T., Varol, H.A. (2023). Augmented Reality for Cognitive Impairments. In: Nee, A.Y.C., Ong, S.K. (eds) Springer Handbook of Augmented Reality. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-67822-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-67822-7_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-67821-0
Online ISBN: 978-3-030-67822-7
eBook Packages: Computer ScienceComputer Science (R0)