Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Sinc-Based Convolutional Neural Networks for EEG-BCI-Based Motor Imagery Classification

  • Conference paper
  • First Online:
Pattern Recognition. ICPR International Workshops and Challenges (ICPR 2021)

Abstract

Brain-Computer Interfaces (BCI) based on motor imagery translate mental motor images recognized from the electroencephalogram (EEG) to control commands. EEG patterns of different imagination tasks, e.g. hand and foot movements, are effectively classified with machine learning techniques using band power features. Recently, also Convolutional Neural Networks (CNNs) that learn both effective features and classifiers simultaneously from raw EEG data have been applied. However, CNNs have two major drawbacks: (i) they have a very large number of parameters, which thus requires a very large number of training examples; and (ii) they are not designed to explicitly learn features in the frequency domain. To overcome these limitations, in this work we introduce Sinc-EEGNet, a lightweight CNN architecture that combines learnable band-pass and depthwise convolutional filters. Experimental results obtained on the publicly available BCI Competition IV Dataset 2a show that our approach outperforms reference methods in terms of classification accuracy.

This work was supported by MIUR (Minister for Education, University and Research, Law 232/216, Department of Excellence).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ang, K.K., Chin, Z.Y., Wang, C., Guan, C., Zhang, H.: Filter bank common spatial pattern algorithm on BCI competition iv datasets 2a and 2b. Front. Neurosci. 6, 39 (2012)

    Article  Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Barron, J.T.: Continuously differentiable exponential linear units. arXiv pp. arXiv-1704 (2017)

    Google Scholar 

  4. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Sig. Process. Mag. 25(1), 41–56 (2007)

    Article  Google Scholar 

  5. Britton, J.W., et al.: Electroencephalography (EEG): An introductory text and atlas of normal and abnormal findings in adults, children, and infants. American Epilepsy Society, Chicago (2016)

    Google Scholar 

  6. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1251–1258 (2017)

    Google Scholar 

  7. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (elus). arXiv preprint arXiv:1511.07289 (2015)

  8. Coyle, D., Principe, J., Lotte, F., Nijholt, A.: Guest editorial: brain/neuronal-computer game interfaces and interaction. IEEE Trans. Comput. Intell. AI games 5(2), 77–81 (2013)

    Article  Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  10. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  11. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Lawhern, V.J., et al.: Eegnet: a compact convolutional neural network for EEG-based brain-computer interfaces. J. Neural Eng. 15(5), 056013 (2018)

    Article  Google Scholar 

  13. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  14. Liu, T., et al.: Cortical dynamic causality network for auditory-motor tasks. IEEE Trans. Neural Syst. Rehabil. Eng. 25(8), 1092–1099 (2016)

    Google Scholar 

  15. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Article  Google Scholar 

  16. Lotte, F., Guan, C.: Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans. Biomed. Eng. 58(2), 355–362 (2010)

    Article  Google Scholar 

  17. Lu, N., Li, T., Ren, X., Miao, H.: A deep learning scheme for motor imagery classification based on restricted Boltzmann machines. IEEE Trans. Neural Syst. Rehabil. Eng. 25(6), 566–576 (2016)

    Article  Google Scholar 

  18. Mitra, S.K.: Digital Signal Processing. McGraw-Hill Science/Engineering/Math (2005)

    Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  20. Nicolas-Alonso, L.F., Gomez-Gil, J.: Brain computer interfaces, a review. Sensors 12(2), 1211–1279 (2012)

    Article  Google Scholar 

  21. Pfurtscheller, G., Da Silva, F.L.: Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  22. Pichiorri, F., et al.: Brain-computer interface boosts motor imagery practice during stroke recovery. Ann. Neurol. 77(5), 851–865 (2015)

    Article  Google Scholar 

  23. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G.: Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans. Rehabil. Eng. 8(4), 441–446 (2000)

    Article  Google Scholar 

  24. Ravanelli, M., Bengio, Y.: Interpretable convolutional filters with sincnet. arXiv preprint arXiv:1811.09725 (2018)

  25. Rivet, B., Cecotti, H., Phlypo, R., Bertrand, O., Maby, E., Mattout, J.: EEG sensor selection by sparse spatial filtering in p300 speller brain-computer interface. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 5379–5382. IEEE (2010)

    Google Scholar 

  26. Samek, W., Kawanabe, M., Müller, K.R.: Divergence-based framework for common spatial patterns algorithms. IEEE Rev. Biomed. Eng. 7, 50–72 (2013)

    Article  Google Scholar 

  27. Schirrmeister, R.T., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Map. 38(11), 5391–5420 (2017)

    Article  Google Scholar 

  28. Schuster, C., et al.: Best practice for motor imagery: a systematic literature review on motor imagery training elements in five different disciplines. BMC Med. 9(1), 75 (2011)

    Article  Google Scholar 

  29. Silver, D., et al.: Mastering the game of go with deep neural networks and tree search. Nature 529(7587), 484 (2016)

    Article  Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Meth. 274, 141–145 (2016)

    Article  Google Scholar 

  32. Tabar, Y.R., Halici, U.: A novel deep learning approach for classification of EEG motor imagery signals. J. Neural Eng. 14(1), 016003 (2016)

    Article  Google Scholar 

  33. Tangermann, M., et al.: Review of the BCI competition IV. Front. Neurosci. 6, 55 (2012)

    Article  Google Scholar 

  34. Yger, F., Lotte, F., Sugiyama, M.: Averaging covariance matrices for EEG signal classification based on the CSP: an empirical study. In: 2015 23rd European Signal Processing Conference (EUSIPCO), pp. 2721–2725. IEEE (2015)

    Google Scholar 

  35. Zhang, R., et al.: Control of a wheelchair in an indoor environment based on a brain-computer interface and automated navigation. IEEE Trans. Neural Syst. Rehabil. Eng. 24(1), 128–139 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Bria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bria, A., Marrocco, C., Tortorella, F. (2021). Sinc-Based Convolutional Neural Networks for EEG-BCI-Based Motor Imagery Classification. In: Del Bimbo, A., et al. Pattern Recognition. ICPR International Workshops and Challenges. ICPR 2021. Lecture Notes in Computer Science(), vol 12661. Springer, Cham. https://doi.org/10.1007/978-3-030-68763-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-68763-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-68762-5

  • Online ISBN: 978-3-030-68763-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics