Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Survey of Metaheuristic Algorithms for Solving Optimization Problems

  • Chapter
  • First Online:
Metaheuristics in Machine Learning: Theory and Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 967))

  • 2132 Accesses

Abstract

With boosting of information technology, metaheuristics have gained considerable popularity, besides a huge number of optimization problems arises in several fields, therefore the need to concern with developing of metaheuristics algorithms and applying these algorithms for solving optimization problems within different scientific fields, become one of important areas to strength the active role of metaheuristic algorithms in solving real life optimization problems. In this context, this chapter introduces a review of applying the single objective and multi-objective optimization algorithms on different optimization problems types for solving engineering design problems, enhancing feature selection process, and other various fields, overall challenges and future trends are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. E.H. Houssein, Y. Mina, E. Aboul, Nature-inspired algorithms: a comprehensive review, in Hybrid Computational Intelligence: Research and Applications (CRC Press, New York, 2019), p. 1

    Google Scholar 

  2. A.G. Hussien, A.E. Hassanien, E.H. Houssein, M. Amin, A.T. Azar, New binary whale optimization algorithm for discrete optimization problems. Eng. Optim. 52(6), 945–959 (2020)

    Article  MathSciNet  Google Scholar 

  3. I.A. ElShaarawy, E.H. Houssein, F.H. Ismail, A.E. Hassanien, An exploration-enhanced elephant herding optimization. Eng. Comput. (2019)

    Google Scholar 

  4. A.A. Ismaeel, I.A. Elshaarawy, E.H. Houssein, F.H. Ismail, A.E. Hassanien, Enhanced elephant herding optimization for global optimization. IEEE Access 7, 34738–34752 (2019)

    Article  Google Scholar 

  5. F.H. Ismail, E.H. Houssein, A.E. Hassanien, Chaotic bird swarm optimization algorithm, in International Conference on Advanced Intelligent Systems and Informatics (Springer, 2018), pp. 294–303

    Google Scholar 

  6. R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43

    Google Scholar 

  7. X.-S. Yang, Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J. Bio-Inspired Comput. 3(2), 77–84 (2011)

    Article  Google Scholar 

  8. S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)

    Article  MathSciNet  Google Scholar 

  9. J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)

    Article  Google Scholar 

  10. R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Subprograms, vol. 13, no. 8 (MIT Press, Cambridge, MA, USA, 1994), p. 32

    Google Scholar 

  12. E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)

    Article  MATH  Google Scholar 

  13. V.K. Patel, V.J. Savsani, Heat transfer search (HTS): a novel optimization algorithm. Inf. Sci. 324, 217–246 (2015)

    Article  Google Scholar 

  14. E.H. Houssein, M.R. Saad, F.A. Hashim, H. Shaban, M. Hassaballah, Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 94, 03731 (2020)

    Article  Google Scholar 

  15. F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm. Future Gen. Comput. Syst. 101, 646–667 (2019)

    Article  Google Scholar 

  16. F.A. Hashim, E.H. Hussain, K. Houssein, M.S. Mabrouk, W. Al-Atabany, Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell. (2020)

    Google Scholar 

  17. F. Glover, Tabu search—Part I. ORSA. J. Comput. 1(3), 190–206 (1989)

    Article  MATH  Google Scholar 

  18. R.V. Rao, V.J. Savsani, D. Vakharia, Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)

    Article  MathSciNet  Google Scholar 

  19. J. Hoffmann, B. Nebel, The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)

    Article  MATH  Google Scholar 

  20. S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  21. E. Mezura-Montes, C.A.C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37(4), 443–473 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. B. Basturk, An artificial bee colony (ABC) algorithm for numeric function optimization, in IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA (2006), p. 2006

    Google Scholar 

  23. S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)

    Article  Google Scholar 

  24. R.V. Rao, V.J. Savsani, D. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 43(3), 303–315 (2011)

    Google Scholar 

  25. E.H. Houssein, M. Kilany, A.E. Hassanien, ECG signals classification: a review. Int. J. Intell. Eng. Inform. 5(4), 376–396 (2017)

    Google Scholar 

  26. A. Tharwat, A.E. Hassanien, B.E. Elnaghi, A BA-based algorithm for parameter optimization of support vector machine. Pattern Recogn. Lett. 93, 13–22 (2017)

    Article  Google Scholar 

  27. E.H. Houssein, M. Kilany, A.E. Hassanien, V. Snasel, A two-stage feature extraction approach for ECG signals, in International Afro-European Conference for Industrial Advancement (Springer, 2016), pp. 299–310

    Google Scholar 

  28. P. Gaspar, J. Carbonell, J.L. Oliveira, On the parameter optimization of support vector machines for binary classification. J. Integr. Bioinform. (JIB) 9(3), 33–43 (2012)

    Article  Google Scholar 

  29. S. Mirjalili, P. Jangir, S.Z. Mirjalili, S. Saremi, I.N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 134, 50–71 (2017)

    Google Scholar 

  30. H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Applications (Elsevier, 2004)

    Google Scholar 

  31. H.H. Hoos, T. Stützle, 2-\(\{\)SLS\(\}\)\(\{\)METHODS\(\}\), Stochastic Local Search. The Morgan Kaufmann Series in Artificial Intelligence (Morgan Kaufmann, San Francisco, 2005), pp. 61–112

    Google Scholar 

  32. S. Kaur, L.K. Awasthi, A. Sangal, G. Dhiman, Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)

    Google Scholar 

  33. S. Gupta, K. Deep, H. Moayedi, L.K. Foong, A. Assad, Sine cosine grey wolf optimizer to solve engineering design problems. Eng. Comput. 1–27 (2020)

    Google Scholar 

  34. A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 113377 (2020)

    Google Scholar 

  35. S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization. Future Gen. Comput. Syst. (2020)

    Google Scholar 

  36. V. Hayyolalam, A.A.P. Kazem, Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)

    Google Scholar 

  37. M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020)

    Google Scholar 

  38. W. Zhao, Z. Zhang, L. Wang, Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020)

    Google Scholar 

  39. I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. (2020)

    Google Scholar 

  40. S.A. Rather, P.S. Bala, Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems. World J. Eng. (2020)

    Google Scholar 

  41. M. Lei, Y. Zhou, Q. Luo, Enhanced metaheuristic optimization: wind-driven flower pollination algorithm. IEEE Access 7, 111439–111465 (2019)

    Article  Google Scholar 

  42. B. Xue, M. Zhang, W.N. Browne, X. Yao, A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)

    Article  Google Scholar 

  43. P. Bermejo, J.A. Gámez, J.M. Puerta, Speeding up incremental wrapper feature subset selection with naive Bayes classifier. Knowl.-Based Syst. 55, 140–147 (2014)

    Google Scholar 

  44. G. Khademi, H. Mohammadi, D. Simon, Gradient-based multi-objective feature selection for gait mode recognition of transfemoral amputees. Sensors 19(2), 253 (2019)

    Article  Google Scholar 

  45. J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)

    Article  Google Scholar 

  46. N. Neggaz, E.H. Houssein, K. Hussain, An efficient henry gas solubility optimization for feature selection. Expert Syst. Appl. 113364 (2020)

    Google Scholar 

  47. Y. Zhang, R. Liu, X. Wang, H. Chen, C. Li, Boosted binary Harris hawks optimizer and feature selection. Structure 25, 26 (2020)

    Google Scholar 

  48. A.G. Hussien, A.E. Hassanien, E.H. Houssein, S. Bhattacharyya, M. Amin, S-shaped binary whale optimization algorithm for feature selection, in Recent Trends in Signal and Image Processing (Springer, 2019), pp. 79–87

    Google Scholar 

  49. M. Abdel-Basset, D. El-Shahat, I. El-henawy, V.H.C. de Albuquerque, S. Mirjalili, A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst. Appl. 139, 12824 (2020)

    Google Scholar 

  50. E.H. Houssein, M.E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput. Chemi. Eng. 133, 106656 (2020)

    Google Scholar 

  51. M. Mafarja, I. Aljarah, A.A. Heidari, A.I. Hammouri, H. Faris, A.-Z. Ala’M, S. Mirjalili, Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl.-Based Syst. 145, 25–45 (2018)

    Google Scholar 

  52. A.G. Hussien, E.H. Houssein, A.E. Hassanien, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017), pp. 166–172

    Google Scholar 

  53. M. Taradeh, M. Mafarja, A.A. Heidari, H. Faris, I. Aljarah, S. Mirjalili, H. Fujita, An evolutionary gravitational search-based feature selection. Inf. Sci. 497, 219–239 (2019)

    Article  Google Scholar 

  54. A.G. Hussien, A.E. Hassanien, E.H. Houssein, Swarming behaviour of salps algorithm for predicting chemical compound activities, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017), pp. 315–320

    Google Scholar 

  55. N. Neggaz, A.A. Ewees, M. Abd Elaziz, M. Mafarja, Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 145, 113103 (2020)

    Google Scholar 

  56. M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 62, 441–453 (2018)

    Article  Google Scholar 

  57. B.O. Alijla, C.P. Lim, L.-P. Wong, A.T. Khader, M.A. Al-Betar, An ensemble of intelligent water drop algorithm for feature selection optimization problem. Appl. Soft Comput. 65, 531–541 (2018)

    Article  Google Scholar 

  58. A. Rouhi, H. Nezamabadi-pour, Filter-based feature selection for microarray data using improved binary gravitational search algorithm, in 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (IEEE, 2018), pp. 1–6

    Google Scholar 

  59. E. Hancer, B. Xue, M. Zhang, Differential evolution for filter feature selection based on information theory and feature ranking. Knowl.-Based Syst. 140, 103–119 (2018)

    Google Scholar 

  60. E.H. Houssein, A. Hamad, A.E. Hassanien, A.A. Fahmy, Epileptic detection based on whale optimization enhanced support vector machine. J. Inf. Optim. Sci. 40(3), 699–723 (2019)

    MathSciNet  Google Scholar 

  61. O. Osanaiye, H. Cai, K.-K.R. Choo, A. Dehghantanha, Z. Xu, M. Dlodlo, Ensemble-based multi-filter feature selection method for DDOS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016(1), 130 (2016)

    Article  Google Scholar 

  62. E. Emary, H.M. Zawbaa, A.E. Hassanien, Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)

    Article  Google Scholar 

  63. M. Mafarja, I. Aljarah, H. Faris, A.I. Hammouri, A.-Z. Ala’M, S. Mirjalili, Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 117, 267–286 (2019)

    Article  Google Scholar 

  64. R. Guha, M. Ghosh, S. Mutsuddi, R. Sarkar, S. Mirjalili, Embedded chaotic whale survival algorithm for filter-wrapper feature selection, arXiv preprint arXiv:2005.04593 (2020)

  65. A. Adeli, A. Broumandnia, Image steganalysis using improved particle swarm optimization based feature selection. Appl. Intell. 48(6), 1609–1622 (2018)

    Article  Google Scholar 

  66. A. Sahoo, S. Chandra, Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl. Soft Comput. 52, 64–80 (2017)

    Article  Google Scholar 

  67. W. Ghanem, A. Jantan, Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intrusion detection. Int. J. Adv. Soft Comput. Appl. 8(1) (2016)

    Google Scholar 

  68. H.B. Nguyen, B. Xue, I. Liu, P. Andreae, M. Zhang, New mechanism for archive maintenance in PSO-based multi-objective feature selection. Soft Comput. 20(10), 3927–3946 (2016)

    Article  Google Scholar 

  69. M. Amoozegar, B. Minaei-Bidgoli, Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism. Expert Syst. Appl. 113, 499–514 (2018)

    Article  Google Scholar 

  70. J. González, J. Ortega, M. Damas, P. Martín-Smith, J.Q. Gan, A new multi-objective wrapper method for feature selection—accuracy and stability analysis for BCI. Neurocomputing 333, 407–418 (2019)

    Article  Google Scholar 

  71. A.-D. Li, B. Xue, M. Zhang, Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection. Inf. Sci. (2020)

    Google Scholar 

  72. M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani, Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics (2020)

    Google Scholar 

  73. C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empirical study on Pareto based multi-objective feature selection for software defect prediction. J. Syst. Softw. 152, 215–238 (2019)

    Article  Google Scholar 

  74. F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany, A modified henry gas solubility optimization for solving motif discovery problem. Neural Comput. Appl. 32(14), 10759–10771 (2020)

    Article  Google Scholar 

  75. İ. Babaoğlu, Solving 2d strip packing problem using fruit fly optimization algorithm. Procedia Comput. Sci. 111, 52–57 (2017)

    Article  Google Scholar 

  76. T. Zhang, L. Ke, J. Li, J. Li, Z. Li, J. Huang, Fireworks algorithm for the satellite link scheduling problem in the navigation constellation, in IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2016), pp. 4029–4037

    Google Scholar 

  77. S. Suresh, S. Lal, Multilevel thresholding based on chaotic Darwinian particle swarm optimization for segmentation of satellite images. Appl. Soft Comput. 55, 503–522 (2017)

    Article  Google Scholar 

  78. H.M. Kanoosh, E.H. Houssein, M.M. Selim, Salp swarm algorithm for node localization in wireless sensor networks. J. Comput. Netw. Commun. 2019 (2019)

    Google Scholar 

  79. E.H. Houssein, M.R. Saad, K. Hussain, W. Zhu, H. Shaban, M. Hassaballah, Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm. IEEE Access 8, 19381–19397 (2020)

    Article  Google Scholar 

  80. E.H. Houssein, A.A. Ewees, M. Abd ElAziz, Improving twin support vector machine based on hybrid swarm optimizer for heartbeat classification. Pattern Recogn. Image Anal. 28(2), 243–253 (2018)

    Google Scholar 

  81. Q. Al-Tashi, S.J. Abdulkadir, H.M. Rais, S. Mirjalili, H. Alhussian, Approaches to multi-objective feature selection: a systematic literature review. IEEE Access 8, 125076–125096 (2020)

    Article  Google Scholar 

  82. M.K. Sohrabi, A. Tajik, Multi-objective feature selection for warfarin dose prediction. Comput. Biol. Chem. 69, 126–133 (2017)

    Article  Google Scholar 

  83. Y. Zhang, S. Cheng, Y. Shi, D.-W. Gong, X. Zhao, Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Expert Syst. Appl. 137, 46–58 (2019)

    Article  Google Scholar 

  84. M. Abd Elaziz, Y.S. Moemen, A.E. Hassanien, S. Xiong, Toxicity risks evaluation of unknown FDA biotransformed drugs based on a multi-objective feature selection approach. Appl. Soft Comput. 105509 (2019)

    Google Scholar 

  85. S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2017)

    Article  Google Scholar 

  86. M.A. Tawhid, V. Savsani, Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput. Appl. 31(2), 915–929 (2019)

    Article  Google Scholar 

  87. G. Dhiman, V. Kumar, Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst. 150, 175–197 (2018)

    Google Scholar 

  88. S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, I. Aljarah, Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2018)

    Article  Google Scholar 

  89. S. Khalilpourazari, B. Naderi, S. Khalilpourazary, Multi-objective stochastic fractal search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Comput. 24(4), 3037–3066 (2020)

    Article  Google Scholar 

  90. L. Shu, P. Jiang, Q. Zhou, T. Xie, An online variable-fidelity optimization approach for multi-objective design optimization. Struct. Multidiscip. Optim. 60(3), 1059–1077 (2019)

    Article  MathSciNet  Google Scholar 

  91. G.G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, A.H. Gandomi, Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst. Appl. 125, 425–441 (2019)

    Article  Google Scholar 

  92. L. Zhang, G. Fu, F. Cheng, J. Qiu, Y. Su, A multi-objective evolutionary approach for mining frequent and high utility itemsets. Appl. Soft Comput. 62, 974–986 (2018)

    Article  Google Scholar 

  93. V. Punnathanam, P. Kotecha, Multi-objective optimization of stirling engine systems using front-based yin-yang-pair optimization. Energy Convers. Manag. 133, 332–348 (2017)

    Article  Google Scholar 

  94. A. Charles, G. Parks, Application of differential evolution algorithms to multi-objective optimization problems in mixed-oxide fuel assembly design. Ann. Nucl. Energy 127, 165–177 (2019)

    Article  Google Scholar 

  95. S. Bansal, P. Kumar, S. Rawat, T. Choudhury, Analysis and impact of social media and it’s privacy on big data, in 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE) (IEEE, 2018), pp. 248–253

    Google Scholar 

  96. A.E. Eiben, S.K. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)

    Article  Google Scholar 

  97. X.-S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)

    Article  MathSciNet  Google Scholar 

  98. A.W. Mohamed, A.K. Mohamed, Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cybern. 10(2), 253–277 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Essam H. Houssein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Houssein, E.H., Mahdy, M.A., Shebl, D., Mohamed, W.M. (2021). A Survey of Metaheuristic Algorithms for Solving Optimization Problems. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_21

Download citation

Publish with us

Policies and ethics