Abstract
With boosting of information technology, metaheuristics have gained considerable popularity, besides a huge number of optimization problems arises in several fields, therefore the need to concern with developing of metaheuristics algorithms and applying these algorithms for solving optimization problems within different scientific fields, become one of important areas to strength the active role of metaheuristic algorithms in solving real life optimization problems. In this context, this chapter introduces a review of applying the single objective and multi-objective optimization algorithms on different optimization problems types for solving engineering design problems, enhancing feature selection process, and other various fields, overall challenges and future trends are discussed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
E.H. Houssein, Y. Mina, E. Aboul, Nature-inspired algorithms: a comprehensive review, in Hybrid Computational Intelligence: Research and Applications (CRC Press, New York, 2019), p. 1
A.G. Hussien, A.E. Hassanien, E.H. Houssein, M. Amin, A.T. Azar, New binary whale optimization algorithm for discrete optimization problems. Eng. Optim. 52(6), 945–959 (2020)
I.A. ElShaarawy, E.H. Houssein, F.H. Ismail, A.E. Hassanien, An exploration-enhanced elephant herding optimization. Eng. Comput. (2019)
A.A. Ismaeel, I.A. Elshaarawy, E.H. Houssein, F.H. Ismail, A.E. Hassanien, Enhanced elephant herding optimization for global optimization. IEEE Access 7, 34738–34752 (2019)
F.H. Ismail, E.H. Houssein, A.E. Hassanien, Chaotic bird swarm optimization algorithm, in International Conference on Advanced Intelligent Systems and Informatics (Springer, 2018), pp. 294–303
R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43
X.-S. Yang, Review of meta-heuristics and generalised evolutionary walk algorithm. Int. J. Bio-Inspired Comput. 3(2), 77–84 (2011)
S. Mirjalili, Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput. Appl. 27(4), 1053–1073 (2016)
J.H. Holland, Genetic algorithms. Sci. Am. 267(1), 66–73 (1992)
R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)
J.R. Koza, Genetic Programming II: Automatic Discovery of Reusable Subprograms, vol. 13, no. 8 (MIT Press, Cambridge, MA, USA, 1994), p. 32
E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a gravitational search algorithm. Inf. Sci. 179(13), 2232–2248 (2009)
V.K. Patel, V.J. Savsani, Heat transfer search (HTS): a novel optimization algorithm. Inf. Sci. 324, 217–246 (2015)
E.H. Houssein, M.R. Saad, F.A. Hashim, H. Shaban, M. Hassaballah, Lévy flight distribution: a new metaheuristic algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 94, 03731 (2020)
F.A. Hashim, E.H. Houssein, M.S. Mabrouk, W. Al-Atabany, S. Mirjalili, Henry gas solubility optimization: a novel physics-based algorithm. Future Gen. Comput. Syst. 101, 646–667 (2019)
F.A. Hashim, E.H. Hussain, K. Houssein, M.S. Mabrouk, W. Al-Atabany, Archimedes optimization algorithm: a new metaheuristic algorithm for solving optimization problems. Appl Intell. (2020)
F. Glover, Tabu search—Part I. ORSA. J. Comput. 1(3), 190–206 (1989)
R.V. Rao, V.J. Savsani, D. Vakharia, Teaching-learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf. Sci. 183(1), 1–15 (2012)
J. Hoffmann, B. Nebel, The FF planning system: fast plan generation through heuristic search. J. Artif. Intell. Res. 14, 253–302 (2001)
S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–680 (1983)
E. Mezura-Montes, C.A.C. Coello, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. Int. J. Gen. Syst. 37(4), 443–473 (2008)
B. Basturk, An artificial bee colony (ABC) algorithm for numeric function optimization, in IEEE Swarm Intelligence Symposium, Indianapolis, IN, USA (2006), p. 2006
S. Mirjalili, S.M. Mirjalili, A. Lewis, Grey wolf optimizer. Adv. Eng. Softw. 69, 46–61 (2014)
R.V. Rao, V.J. Savsani, D. Vakharia, Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems. Comput.-Aided Des. 43(3), 303–315 (2011)
E.H. Houssein, M. Kilany, A.E. Hassanien, ECG signals classification: a review. Int. J. Intell. Eng. Inform. 5(4), 376–396 (2017)
A. Tharwat, A.E. Hassanien, B.E. Elnaghi, A BA-based algorithm for parameter optimization of support vector machine. Pattern Recogn. Lett. 93, 13–22 (2017)
E.H. Houssein, M. Kilany, A.E. Hassanien, V. Snasel, A two-stage feature extraction approach for ECG signals, in International Afro-European Conference for Industrial Advancement (Springer, 2016), pp. 299–310
P. Gaspar, J. Carbonell, J.L. Oliveira, On the parameter optimization of support vector machines for binary classification. J. Integr. Bioinform. (JIB) 9(3), 33–43 (2012)
S. Mirjalili, P. Jangir, S.Z. Mirjalili, S. Saremi, I.N. Trivedi, Optimization of problems with multiple objectives using the multi-verse optimization algorithm. Knowl.-Based Syst. 134, 50–71 (2017)
H.H. Hoos, T. Stützle, Stochastic Local Search: Foundations and Applications (Elsevier, 2004)
H.H. Hoos, T. Stützle, 2-\(\{\)SLS\(\}\)\(\{\)METHODS\(\}\), Stochastic Local Search. The Morgan Kaufmann Series in Artificial Intelligence (Morgan Kaufmann, San Francisco, 2005), pp. 61–112
S. Kaur, L.K. Awasthi, A. Sangal, G. Dhiman, Tunicate swarm algorithm: a new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 90, 103541 (2020)
S. Gupta, K. Deep, H. Moayedi, L.K. Foong, A. Assad, Sine cosine grey wolf optimizer to solve engineering design problems. Eng. Comput. 1–27 (2020)
A. Faramarzi, M. Heidarinejad, S. Mirjalili, A.H. Gandomi, Marine predators algorithm: a nature-inspired metaheuristic. Expert Syst. Appl. 113377 (2020)
S. Li, H. Chen, M. Wang, A.A. Heidari, S. Mirjalili, Slime mould algorithm: a new method for stochastic optimization. Future Gen. Comput. Syst. (2020)
V. Hayyolalam, A.A.P. Kazem, Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103249 (2020)
M.H. Sulaiman, Z. Mustaffa, M.M. Saari, H. Daniyal, Barnacles mating optimizer: a new bio-inspired algorithm for solving engineering optimization problems. Eng. Appl. Artif. Intell. 87, 103330 (2020)
W. Zhao, Z. Zhang, L. Wang, Manta ray foraging optimization: an effective bio-inspired optimizer for engineering applications. Eng. Appl. Artif. Intell. 87, 103300 (2020)
I. Ahmadianfar, O. Bozorg-Haddad, X. Chu, Gradient-based optimizer: a new metaheuristic optimization algorithm. Inf. Sci. (2020)
S.A. Rather, P.S. Bala, Swarm-based chaotic gravitational search algorithm for solving mechanical engineering design problems. World J. Eng. (2020)
M. Lei, Y. Zhou, Q. Luo, Enhanced metaheuristic optimization: wind-driven flower pollination algorithm. IEEE Access 7, 111439–111465 (2019)
B. Xue, M. Zhang, W.N. Browne, X. Yao, A survey on evolutionary computation approaches to feature selection. IEEE Trans. Evol. Comput. 20(4), 606–626 (2015)
P. Bermejo, J.A. Gámez, J.M. Puerta, Speeding up incremental wrapper feature subset selection with naive Bayes classifier. Knowl.-Based Syst. 55, 140–147 (2014)
G. Khademi, H. Mohammadi, D. Simon, Gradient-based multi-objective feature selection for gait mode recognition of transfemoral amputees. Sensors 19(2), 253 (2019)
J. Cai, J. Luo, S. Wang, S. Yang, Feature selection in machine learning: a new perspective. Neurocomputing 300, 70–79 (2018)
N. Neggaz, E.H. Houssein, K. Hussain, An efficient henry gas solubility optimization for feature selection. Expert Syst. Appl. 113364 (2020)
Y. Zhang, R. Liu, X. Wang, H. Chen, C. Li, Boosted binary Harris hawks optimizer and feature selection. Structure 25, 26 (2020)
A.G. Hussien, A.E. Hassanien, E.H. Houssein, S. Bhattacharyya, M. Amin, S-shaped binary whale optimization algorithm for feature selection, in Recent Trends in Signal and Image Processing (Springer, 2019), pp. 79–87
M. Abdel-Basset, D. El-Shahat, I. El-henawy, V.H.C. de Albuquerque, S. Mirjalili, A new fusion of grey wolf optimizer algorithm with a two-phase mutation for feature selection. Expert Syst. Appl. 139, 12824 (2020)
E.H. Houssein, M.E. Hosney, D. Oliva, W.M. Mohamed, M. Hassaballah, A novel hybrid Harris hawks optimization and support vector machines for drug design and discovery. Comput. Chemi. Eng. 133, 106656 (2020)
M. Mafarja, I. Aljarah, A.A. Heidari, A.I. Hammouri, H. Faris, A.-Z. Ala’M, S. Mirjalili, Evolutionary population dynamics and grasshopper optimization approaches for feature selection problems. Knowl.-Based Syst. 145, 25–45 (2018)
A.G. Hussien, E.H. Houssein, A.E. Hassanien, A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017), pp. 166–172
M. Taradeh, M. Mafarja, A.A. Heidari, H. Faris, I. Aljarah, S. Mirjalili, H. Fujita, An evolutionary gravitational search-based feature selection. Inf. Sci. 497, 219–239 (2019)
A.G. Hussien, A.E. Hassanien, E.H. Houssein, Swarming behaviour of salps algorithm for predicting chemical compound activities, in 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS) (IEEE, 2017), pp. 315–320
N. Neggaz, A.A. Ewees, M. Abd Elaziz, M. Mafarja, Boosting salp swarm algorithm by sine cosine algorithm and disrupt operator for feature selection. Expert Syst. Appl. 145, 113103 (2020)
M. Mafarja, S. Mirjalili, Whale optimization approaches for wrapper feature selection. Appl. Soft Comput. 62, 441–453 (2018)
B.O. Alijla, C.P. Lim, L.-P. Wong, A.T. Khader, M.A. Al-Betar, An ensemble of intelligent water drop algorithm for feature selection optimization problem. Appl. Soft Comput. 65, 531–541 (2018)
A. Rouhi, H. Nezamabadi-pour, Filter-based feature selection for microarray data using improved binary gravitational search algorithm, in 2018 3rd Conference on Swarm Intelligence and Evolutionary Computation (CSIEC) (IEEE, 2018), pp. 1–6
E. Hancer, B. Xue, M. Zhang, Differential evolution for filter feature selection based on information theory and feature ranking. Knowl.-Based Syst. 140, 103–119 (2018)
E.H. Houssein, A. Hamad, A.E. Hassanien, A.A. Fahmy, Epileptic detection based on whale optimization enhanced support vector machine. J. Inf. Optim. Sci. 40(3), 699–723 (2019)
O. Osanaiye, H. Cai, K.-K.R. Choo, A. Dehghantanha, Z. Xu, M. Dlodlo, Ensemble-based multi-filter feature selection method for DDOS detection in cloud computing. EURASIP J. Wirel. Commun. Netw. 2016(1), 130 (2016)
E. Emary, H.M. Zawbaa, A.E. Hassanien, Binary grey wolf optimization approaches for feature selection. Neurocomputing 172, 371–381 (2016)
M. Mafarja, I. Aljarah, H. Faris, A.I. Hammouri, A.-Z. Ala’M, S. Mirjalili, Binary grasshopper optimisation algorithm approaches for feature selection problems. Expert Syst. Appl. 117, 267–286 (2019)
R. Guha, M. Ghosh, S. Mutsuddi, R. Sarkar, S. Mirjalili, Embedded chaotic whale survival algorithm for filter-wrapper feature selection, arXiv preprint arXiv:2005.04593 (2020)
A. Adeli, A. Broumandnia, Image steganalysis using improved particle swarm optimization based feature selection. Appl. Intell. 48(6), 1609–1622 (2018)
A. Sahoo, S. Chandra, Multi-objective grey wolf optimizer for improved cervix lesion classification. Appl. Soft Comput. 52, 64–80 (2017)
W. Ghanem, A. Jantan, Novel multi-objective artificial bee colony optimization for wrapper based feature selection in intrusion detection. Int. J. Adv. Soft Comput. Appl. 8(1) (2016)
H.B. Nguyen, B. Xue, I. Liu, P. Andreae, M. Zhang, New mechanism for archive maintenance in PSO-based multi-objective feature selection. Soft Comput. 20(10), 3927–3946 (2016)
M. Amoozegar, B. Minaei-Bidgoli, Optimizing multi-objective PSO based feature selection method using a feature elitism mechanism. Expert Syst. Appl. 113, 499–514 (2018)
J. González, J. Ortega, M. Damas, P. MartÃn-Smith, J.Q. Gan, A new multi-objective wrapper method for feature selection—accuracy and stability analysis for BCI. Neurocomputing 333, 407–418 (2019)
A.-D. Li, B. Xue, M. Zhang, Multi-objective feature selection using hybridization of a genetic algorithm and direct multisearch for key quality characteristic selection. Inf. Sci. (2020)
M. Rostami, S. Forouzandeh, K. Berahmand, M. Soltani, Integration of multi-objective PSO based feature selection and node centrality for medical datasets. Genomics (2020)
C. Ni, X. Chen, F. Wu, Y. Shen, Q. Gu, An empirical study on Pareto based multi-objective feature selection for software defect prediction. J. Syst. Softw. 152, 215–238 (2019)
F.A. Hashim, E.H. Houssein, K. Hussain, M.S. Mabrouk, W. Al-Atabany, A modified henry gas solubility optimization for solving motif discovery problem. Neural Comput. Appl. 32(14), 10759–10771 (2020)
İ. Babaoğlu, Solving 2d strip packing problem using fruit fly optimization algorithm. Procedia Comput. Sci. 111, 52–57 (2017)
T. Zhang, L. Ke, J. Li, J. Li, Z. Li, J. Huang, Fireworks algorithm for the satellite link scheduling problem in the navigation constellation, in IEEE Congress on Evolutionary Computation (CEC) (IEEE, 2016), pp. 4029–4037
S. Suresh, S. Lal, Multilevel thresholding based on chaotic Darwinian particle swarm optimization for segmentation of satellite images. Appl. Soft Comput. 55, 503–522 (2017)
H.M. Kanoosh, E.H. Houssein, M.M. Selim, Salp swarm algorithm for node localization in wireless sensor networks. J. Comput. Netw. Commun. 2019 (2019)
E.H. Houssein, M.R. Saad, K. Hussain, W. Zhu, H. Shaban, M. Hassaballah, Optimal sink node placement in large scale wireless sensor networks based on Harris’ hawk optimization algorithm. IEEE Access 8, 19381–19397 (2020)
E.H. Houssein, A.A. Ewees, M. Abd ElAziz, Improving twin support vector machine based on hybrid swarm optimizer for heartbeat classification. Pattern Recogn. Image Anal. 28(2), 243–253 (2018)
Q. Al-Tashi, S.J. Abdulkadir, H.M. Rais, S. Mirjalili, H. Alhussian, Approaches to multi-objective feature selection: a systematic literature review. IEEE Access 8, 125076–125096 (2020)
M.K. Sohrabi, A. Tajik, Multi-objective feature selection for warfarin dose prediction. Comput. Biol. Chem. 69, 126–133 (2017)
Y. Zhang, S. Cheng, Y. Shi, D.-W. Gong, X. Zhao, Cost-sensitive feature selection using two-archive multi-objective artificial bee colony algorithm. Expert Syst. Appl. 137, 46–58 (2019)
M. Abd Elaziz, Y.S. Moemen, A.E. Hassanien, S. Xiong, Toxicity risks evaluation of unknown FDA biotransformed drugs based on a multi-objective feature selection approach. Appl. Soft Comput. 105509 (2019)
S. Mirjalili, P. Jangir, S. Saremi, Multi-objective ant lion optimizer: a multi-objective optimization algorithm for solving engineering problems. Appl. Intell. 46(1), 79–95 (2017)
M.A. Tawhid, V. Savsani, Multi-objective sine-cosine algorithm (MO-SCA) for multi-objective engineering design problems. Neural Comput. Appl. 31(2), 915–929 (2019)
G. Dhiman, V. Kumar, Multi-objective spotted hyena optimizer: a multi-objective optimization algorithm for engineering problems. Knowl.-Based Syst. 150, 175–197 (2018)
S.Z. Mirjalili, S. Mirjalili, S. Saremi, H. Faris, I. Aljarah, Grasshopper optimization algorithm for multi-objective optimization problems. Appl. Intell. 48(4), 805–820 (2018)
S. Khalilpourazari, B. Naderi, S. Khalilpourazary, Multi-objective stochastic fractal search: a powerful algorithm for solving complex multi-objective optimization problems. Soft Comput. 24(4), 3037–3066 (2020)
L. Shu, P. Jiang, Q. Zhou, T. Xie, An online variable-fidelity optimization approach for multi-objective design optimization. Struct. Multidiscip. Optim. 60(3), 1059–1077 (2019)
G.G. Tejani, N. Pholdee, S. Bureerat, D. Prayogo, A.H. Gandomi, Structural optimization using multi-objective modified adaptive symbiotic organisms search. Expert Syst. Appl. 125, 425–441 (2019)
L. Zhang, G. Fu, F. Cheng, J. Qiu, Y. Su, A multi-objective evolutionary approach for mining frequent and high utility itemsets. Appl. Soft Comput. 62, 974–986 (2018)
V. Punnathanam, P. Kotecha, Multi-objective optimization of stirling engine systems using front-based yin-yang-pair optimization. Energy Convers. Manag. 133, 332–348 (2017)
A. Charles, G. Parks, Application of differential evolution algorithms to multi-objective optimization problems in mixed-oxide fuel assembly design. Ann. Nucl. Energy 127, 165–177 (2019)
S. Bansal, P. Kumar, S. Rawat, T. Choudhury, Analysis and impact of social media and it’s privacy on big data, in 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE) (IEEE, 2018), pp. 248–253
A.E. Eiben, S.K. Smit, Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput. 1(1), 19–31 (2011)
X.-S. Yang, M. Karamanoglu, X. He, Flower pollination algorithm: a novel approach for multiobjective optimization. Eng. Optim. 46(9), 1222–1237 (2014)
A.W. Mohamed, A.K. Mohamed, Adaptive guided differential evolution algorithm with novel mutation for numerical optimization. Int. J. Mach. Learn. Cybern. 10(2), 253–277 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Houssein, E.H., Mahdy, M.A., Shebl, D., Mohamed, W.M. (2021). A Survey of Metaheuristic Algorithms for Solving Optimization Problems. In: Oliva, D., Houssein, E.H., Hinojosa, S. (eds) Metaheuristics in Machine Learning: Theory and Applications. Studies in Computational Intelligence, vol 967. Springer, Cham. https://doi.org/10.1007/978-3-030-70542-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-030-70542-8_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70541-1
Online ISBN: 978-3-030-70542-8
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)