Abstract
In this Introduction, we illustrate the genesis of the theory of chaos as by-product of the study of nonlinear systems in physics and meteorology. Then, we introduce the notion of nonlinearities in economics and the extension of the methods and the analyses devised in hard sciences not only for understanding the dynamics but, also, for predicting and controlling them. After that, we describe the organization of this book that, in the first three parts, has the objective of providing the needed knowledge to anyone who would like to study nonlinear phenomena in economics. The fourth part, instead, shows how the aforementioned methods and analyses can be applied to economics and gives an account of current research on the topic.
Philosophy is written in this grand book, the universe, which stands continually open to our gaze. But the book cannot be understood unless one first learns to comprehend the language and read the letters in which it is composed. It is written in the language of mathematics, and its characters are triangles, circles, and other geometric figures without which it is humanly impossible to understand a single word of it; without these, one wanders about in a dark labyrinth.Galileo GalileiThe Assayer
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arrow, K.J., Hahn, F.: General Competitive Analysis. Holden-Day (1971)
Briggs, K.: A precise calculation of the Feigenbaum constants. Math. Comput. 57, 435–439 (1991). https://doi.org/10.1090/S0025-5718-1991-1079009-6
Broska, L.H., Poganietz, W.R., Vögele, S.: Extreme events defined—a conceptual discussion applying a complex systems approach. Futures 115, 102490 (2020)
Burns, A.F., Mitchell, W.C.: Measuring Business Cycles. National Bureau of Economic Research, Cambridge (1946)
Chen, P., Semmler, W.: Financial stress, regime switching and spillover effects: evidence from a multi-regime global VAR model. J. Econ. Dyn. Control 91, 318–348 (2018)
Debreu, G.: Theory of Value: An Axiomatic Analysis of Economic Equilibrium, vol. 17. Yale University Press, Yale (1959)
Feigenbaum, M.J.: Quantitative universality for a class of nonlinear transformations. J. Stat. Phys. 19(1), 25–52 (1978). https://doi.org/10.1007/BF01020332
Feudel, U., Pisarchik, A.N., Showalter, K.: Multistability and tipping: from mathematics and physics to climate and brain—minireview and preface to the focus issue. Chaos 28, 033501 (2018)
Frenkel, D.: Ordered chaos. Nat. Phys. 4, 345 (2008)
Frisch, R.: Propagation Problems and Impulse Problems in Dynamic Economics, vol. 3. G. Allen & Unwin, Crows Nest (1933)
Frolov, N.S., Grubov, V.V., Maksimenko, V.A., Lüttjohann, A., Makarov, V.V., Pavlov, A.N., Sitnikova, E., Pisarchik, A.N., Kurths, J., Hramov, A.E.: Statistical properties and predictability of extreme epileptic events. Sci. Rep. 9(1), 1–8 (2019)
Goodwin, R.M.: The nonlinear accelerator and the persistence of business cycle. Econometrica 19(1), 1–17 (1951)
Hamilton, J.D.: Time Series Analysis. Princeton University Press, Princeton (2020)
Kravtsov, Y.A., Surovyatkina, E.: Nonlinear saturation of prebifurcation noise amplification. Phys. Lett. A 319(3–4), 348–351 (2003)
Lorenz, E.N.: Deterministic nonperiodic flow. J. Atmos. Sci. 20, 130–141 (1963)
Mittnik, S., Semmler, W.: Regime dependence of the fiscal multiplier. J. Econ. Behav. Organ. 83, 502–522 (2013)
Orlando, G.: A discrete mathematical model for chaotic dynamics in economics: Kaldor’s model on business cycle. Math. Comput. Simul. 125, 83–98 (2016). https://doi.org/10.1016/j.matcom.2016.01.001
Orlando, G.: Chaotic business cycles within a Kaldor–Kalecki Framework. In: Nonlinear Dynamical Systems with Self-Excited and Hidden Attractors (2018). https://doi.org/10.1007/978-3-319-71243-7_6
Orlando, G., Della Rossa, F.: An empirical test on Harrod’s open economy dynamics. Mathematics 7(6), 524 (2019). https://doi.org/10.3390/math7060524
Orlando, G., Mininni, R.M., Bufalo, M.: A New Approach to CIR Short-Term Rates Modelling, pp. 35–43. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-95285-7_2
Orlando, G., Mininni, R.M., Bufalo, M.: A new approach to forecast market interest rates through the CIR model. Studies in Economics and Finance (2019). https://doi.org/10.1108/SEF-03-2019-0116
Orlando, G., Mininni, R.M., Bufalo, M.: Forecasting interest rates through Vasicek and CIR models: a partitioning approach. J. Forecasting 39, 569–579 (2020). https://doi.org/abs/10.1002/for.2642
Orlando, G., Mininni, R.M., Bufalo, M.: Interest rates calibration with a CIR model. J. Risk Financ. (2019). https://doi.org/10.1108/JRF-05-2019-0080
Orlando, G., Taglialatela, G.: A review on implied volatility calculation. J. Comput. Appl. Math. 320, 202–220 (2017). https://doi.org/10.1016/j.cam.2017.02.002
Orlando, G., Zimatore, G.: RQA correlations on real business cycles time series. In: Indian Academy of Sciences Conference Series—Proceedings of the Conference on Perspectives in Nonlinear Dynamics—2016, vol. 1, pp. 35–41. Springer, Berlin (2017). https://doi.org/10.29195/iascs.01.01.0009
Orlando, G., Zimatore, G.: Recurrence quantification analysis of business cycles. Chaos Solitons Fractals 110, 82–94 (2018). https://doi.org/10.1016/j.chaos.2018.02.032
Orlando, G., Zimatore, G.: RQA correlations on business cycles: a comparison between real and simulated data. Adv. Nonlinear Dyn. Electron. Syst. 17, 62–68 (2019). https://doi.org/10.1142/9789811201523_0012
Orlando, G., Zimatore, G.: Business cycle modeling between financial crises and black swans: Ornstein–Uhlenbeck stochastic process vs Kaldor deterministic chaotic model. Chaos 30(8), 083129 (2020)
Orlando, G., Zimatore, G.: Recurrence quantification analysis on a Kaldorian business cycle model. Nonlinear Dyn. (2020). https://doi.org/10.1007/s11071-020-05511-y
Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64(11), 1196 (1990)
Pisarchik, A.N., Jaimes-Reátegui, R., Sevilla-Escoboza, R., Huerta-Cuellar, G., Taki, M.: Rogue waves in a multistable system. Phys. Rev. Lett. 107(27), 274101 (2011)
Poincaré, H.: New Methods of Celestial Mechanics, vol. 13. Springer, Berlin (1992)
Romeiras, F.J., Grebogi, C., Ott, E., Dayawansa, W.: Controlling chaotic dynamical systems. Phys. D: Nonlinear Phenom. 58(1–4), 165–192 (1992)
Schuster, H.: Handbook of Chaos Control. Wiley, London (1999)
Taleb, N.N.: The Black Swan: The Impact of the Highly Improbable, vol. 2. Random House (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Orlando, G., Pisarchik, A.N., Stoop, R. (2021). Introduction. In: Orlando, G., Pisarchik, A.N., Stoop, R. (eds) Nonlinearities in Economics. Dynamic Modeling and Econometrics in Economics and Finance, vol 29. Springer, Cham. https://doi.org/10.1007/978-3-030-70982-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-70982-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-70981-5
Online ISBN: 978-3-030-70982-2
eBook Packages: Economics and FinanceEconomics and Finance (R0)