Abstract
Recent advances in marine animal research have raised significant demands for fine-grained marine animal segmentation techniques. Deep learning has shown remarkable success in a variety of object segmentation tasks. However, deep based marine animal segmentation is lack of investigation due to the short of a marine animal dataset. To this end, we elaborately construct the first open Marine Animal Segmentation dataset, called MAS3K, which consists of more than three thousand images of diverse marine animals, with common and camouflaged appearances, in different underwater conditions, such as low illumination, turbid water quality, photographic distortion, etc. Each image from the MAS3K dataset has rich annotations, including an object-level annotation, a category name, an animal camouflage method (if applicable), and attribute annotations. In addition, based on MAS3K, we systematically evaluate 6 cutting-edge object segmentation models using five widely-used metrics. We perform comprehensive analysis and report detailed qualitative and quantitative benchmark results in the paper. Our work provides valuable insights into the marine animal segmentation, which will boost the development in this direction effectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Beijbom, O., et al.: Improving automated annotation of benthic survey images using wide-band fluorescence. Sci. Rep. 6, 23166 (2016)
Borji, A., Cheng, M.M., Jiang, H., Li, J.: Salient object detection: a benchmark. IEEE Trans. Image Process. 24(12), 5706–5722 (2015)
Carraway, L.N., Verts, B., et al.: A bibliography of Oregon mammalogy (1982)
Chen, Q., et al.: EF-Net: a novel enhancement and fusion network for RGB-D saliency detection. Pattern Recogn. 112, 107740 (2020)
Cheng, M.M., Liu, Y., Lin, W.Y., Zhang, Z., Rosin, P.L., Torr, P.H.: BING: binarized normed gradients for objectness estimation at 300fps. Comput. Vis. Media 5(1), 3–20 (2019)
Cheng, M.M., Mitra, N.J., Huang, X., Torr, P.H., Hu, S.M.: Global contrast based salient region detection. IEEE Trans. Pattern Anal. Mach. Intell. 37(3), 569–582 (2014)
Chiang, J.Y., Chen, Y.C.: Underwater image enhancement by wavelength compensation and dehazing. IEEE Trans. Image Process. 21(4), 1756–1769 (2011)
Cott, H.B.: Adaptive Coloration in Animals. Oxford University Press, Methuen (1940)
Cutter, G., Stierhoff, K., Zeng, J.: Automated detection of rockfish in unconstrained underwater videos using Haar cascades and a new image dataset: labeled fishes in the wild. In: 2015 IEEE Winter Applications and Computer Vision Workshops, pp. 57–62. IEEE (2015)
Dawkins, M., Stewart, C., Gallager, S., York, A.: Automatic scallop detection in benthic environments. In: 2013 IEEE Workshop on Applications of Computer Vision, pp. 160–167. IEEE (2013)
Fan, D.-P., Cheng, M.-M., Liu, J.-J., Gao, S.-H., Hou, Q., Borji, A.: Salient objects in clutter: bringing salient object detection to the foreground. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 196–212. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_12
Fan, D.P., Cheng, M.M., Liu, Y., Li, T., Borji, A.: Structure-measure: a new way to evaluate foreground maps. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4548–4557 (2017)
Fan, D.P., Gong, C., Cao, Y., Ren, B., Cheng, M.M., Borji, A.: Enhanced-alignment measure for binary foreground map evaluation. arXiv preprint arXiv:1805.10421 (2018)
Fan, D.P., Ji, G.P., Sun, G., Cheng, M.M., Shen, J., Shao, L.: Camouflaged object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2777–2787 (2020)
Fan, D.P., et al.: PraNet: parallel reverse attention network for polyp segmentation. arXiv preprint arXiv:2006.11392 (2020)
Fan, D.P., Lin, Z., Zhang, Z., Zhu, M., Cheng, M.M.: Rethinking RGB-D salient object detection: models, data sets, and large-scale benchmarks. In: IEEE Transactions on Neural Networks and Learning Systems (2020)
Fan, D.-P., Zhai, Y., Borji, A., Yang, J., Shao, L.: BBS-Net: RGB-D salient object detection with a bifurcated backbone strategy network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 275–292. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_17
Fu, K., Fan, D.P., Ji, G.P., Zhao, Q.: JL-DCF: joint learning and densely-cooperative fusion framework for RGB-D salient object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3052–3062 (2020)
Fu, X., Zhuang, P., Huang, Y., Liao, Y., Zhang, X.P., Ding, X.: A retinex-based enhancing approach for single underwater image. In: 2014 IEEE International Conference on Image Processing, pp. 4572–4576. IEEE (2014)
Guo, Y., Li, H., Zhuang, P.: Underwater image enhancement using a multiscale dense generative adversarial network. IEEE J. Oceanic Eng. 45, 862–870 (2019)
Huang, Z., Chen, H.X., Zhou, T., Yang, Y.Z., Wang, C.Y.: Multi-level cross-modal interaction network for RGB-D salient object detection. arXiv preprint arXiv:2007.14352 (2020)
Islam, M.J., Luo, P., Sattar, J.: Simultaneous enhancement and super-resolution of underwater imagery for improved visual perception. arXiv preprint arXiv:2002.01155 (2020)
Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)
Jäger, J., Simon, M., Denzler, J., Wolff, V., Fricke-Neuderth, K., Kruschel, C.: Croatian fish dataset: fine-grained classification of fish species in their natural habitat. In: British Machine Vision Conference, Swansea (2015)
Jian, M., Qi, Q., Dong, J., Yin, Y., Zhang, W., Lam, K.M.: The OUC-vision large-scale underwater image database. In: 2017 IEEE International Conference on Multimedia and Expo, pp. 1297–1302. IEEE (2017)
Jobson, D.J., Rahman, Z., Woodell, G.A.: A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)
Johnsen, S.: Hidden in plain sight: the ecology and physiology of organismal transparency. Biol. Bull. 201(3), 301–318 (2001)
Kisantal, M., Wojna, Z., Murawski, J., Naruniec, J., Cho, K.: Augmentation for small object detection. arXiv preprint arXiv:1902.07296 (2019)
Le, T.N., Nguyen, T.V., Nie, Z., Tran, M.T., Sugimoto, A.: Anabranch network for camouflaged object segmentation. Comput. Vis. Image Underst. 184, 45–56 (2019)
Li, C., Guo, C., Ren, W., Cong, R., Hou, J., Kwong, S., Tao, D.: An underwater image enhancement benchmark dataset and beyond. IEEE Trans. Image Process. 29, 4376–4389 (2019)
Li, C., Guo, J., Guo, C.: Emerging from water: underwater image color correction based on weakly supervised color transfer. IEEE Signal Process. Lett. 25(3), 323–327 (2018)
Li, G., Yu, Y.: Visual saliency based on multiscale deep features. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5455–5463 (2015)
Li, J., Skinner, K.A., Eustice, R.M., Johnson-Roberson, M.: WaterGAN: unsupervised generative network to enable real-time color correction of monocular underwater images. IEEE Robot. Autom. Lett. 3(1), 387–394 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, J.J., Hou, Q., Cheng, M.M., Feng, J., Jiang, J.: A simple pooling-based design for real-time salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2019)
Lu, M., Wagner, A., Van Male, L., Whitehead, A., Boehnlein, J.: Imagery rehearsal therapy for posttraumatic nightmares in U.S. veterans. J. Trauma. Stress 22(3), 236–239 (2009)
Ludvigsen, M., Sortland, B., Johnsen, G., Singh, H.: Applications of geo-referenced underwater photo mosaics in marine biology and archaeology. Oceanography 20(4), 140–149 (2007)
Mahmood, A., et al.: Automatic annotation of coral reefs using deep learning. In: MTS/IEEE Conference OCEANS16, Monterey, pp. 1–5. IEEE (2016)
Margolin, R., Zelnik-Manor, L., Tal, A.: How to evaluate foreground maps? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2014)
McFall-Ngai, M.J.: Crypsis in the pelagic environment. Am. Zool. 30(1), 175–188 (1990)
Movahedi, V., Elder, J.H.: Design and perceptual validation of performance measures for salient object segmentation. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 49–56. IEEE (2010)
Pedersen, M., Bruslund Haurum, J., Gade, R., Moeslund, T.B.: Detection of marine animals in a new underwater dataset with varying visibility. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 18–26 (2019)
Perazzi, F., Krähenbühl, P., Pritch, Y., Hornung, A.: Saliency filters: contrast based filtering for salient region detection. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–740. IEEE (2012)
Perazzi, F., Pont-Tuset, J., McWilliams, B., Van Gool, L., Gross, M., Sorkine-Hornung, A.: A benchmark dataset and evaluation methodology for video object segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 724–732 (2016)
Qin, X., Zhang, Z., Huang, C., Dehghan, M., Zaiane, O.R., Jagersand, M.: U2-Net: going deeper with nested U-structure for salient object detection. Pattern Recogn. 106, 107404 (2020)
Qin, X., Zhang, Z., Huang, C., Gao, C., Dehghan, M., Jagersand, M.: BASNet: boundary-aware salient object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7479–7489 (2019)
Rasmussen, C., Zhao, J., Ferraro, D., Trembanis, A.: Deep census: AUV-based scallop population monitoring. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 2865–2873 (2017)
Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)
Siddiqui, S.A., et al.: Automatic fish species classification in underwater videos: exploiting pre-trained deep neural network models to compensate for limited labelled data. ICES J. Mar. Sci. 75, 374–389 (2017). Handling editor: Howard Browman
Skurowski, P., Abdulameer, H., Błaszczyk, J., Depta, T., Kornacki, A., Kozieł, P.: Animal camouflage analysis: Chameleon database (2018, unpublished manuscript)
Villon, S., Chaumont, M., Subsol, G., Villéger, S., Claverie, T., Mouillot, D.: Coral reef fish detection and recognition in underwater videos by supervised machine learning: comparison between deep learning and HOG+SVM methods. In: Blanc-Talon, J., Distante, C., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2016. LNCS, vol. 10016, pp. 160–171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48680-2_15
Wallace, A.R.: The colours of animals. Nature 42(1082), 289–291 (1890)
Wang, L., et al.: Learning to detect salient objects with image-level supervision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 136–145 (2017)
Wu, Y.H., et al.: JCS: an explainable COVID-19 diagnosis system by joint classification and segmentation. arXiv preprint arXiv:2004.07054 (2020)
Wu, Z., Su, L., Huang, Q.: Stacked cross refinement network for edge-aware salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7264–7273 (2019)
Yan, Q., Xu, L., Shi, J., Jia, J.: Hierarchical saliency detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)
Yang, C., Zhang, L., Lu, H., Ruan, X., Yang, M.H.: Saliency detection via graph-based manifold ranking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173 (2013)
Zeng, Y., Zhang, P., Zhang, J., Lin, Z., Lu, H.: Towards high-resolution salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 7234–7243 (2019)
Zhang, J., et al.: UC-Net: uncertainty inspired RGB-D saliency detection via conditional variational autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8582–8591 (2020)
Zhang, P., Wang, D., Lu, H., Wang, H., Ruan, X.: Amulet: aggregating multi-level convolutional features for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 202–211 (2017)
Zhang, S., Wang, T., Dong, J., Yu, H.: Underwater image enhancement via extended multi-scale retinex. Neurocomputing 245, 1–9 (2017)
Zhao, J.X., Liu, J.J., Fan, D.P., Cao, Y., Yang, J., Cheng, M.M.: EGNet: edge guidance network for salient object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 8779–8788 (2019)
Zhao, Z.Q., Zheng, P., Xu, S.t., Wu, X.: Object detection with deep learning: a review. IEEE Transactions on Neural Networks and Learning Systems 30(11), 3212–3232 (2019)
Zhou, T., Fan, D.P., Cheng, M.M., Shen, J., Shao, L.: RGB-D salient object detection: a survey. arXiv preprint arXiv:2008.00230 (2020)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, L., Rigall, E., Dong, J., Chen, G. (2021). MAS3K: An Open Dataset for Marine Animal Segmentation. In: Wolf, F., Gao, W. (eds) Benchmarking, Measuring, and Optimizing. Bench 2020. Lecture Notes in Computer Science(), vol 12614. Springer, Cham. https://doi.org/10.1007/978-3-030-71058-3_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-71058-3_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-71057-6
Online ISBN: 978-3-030-71058-3
eBook Packages: Computer ScienceComputer Science (R0)