Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cognitive Musicology and Artificial Intelligence: Harmonic Analysis, Learning, and Generation

  • Chapter
  • First Online:
Handbook of Artificial Intelligence for Music

Abstract

In this chapter, recent research in the domain of melodic harmonization and computational creativity is presented with a view to highlighting strengths and weaknesses of the classical cognitively inspired symbolic AI approach (often in juxtaposition to contemporary deep learning methodologies). A modular melodic harmonization system that learns chord types, chord transitions, cadences, and bassline voice leading from diverse harmonic datasets is presented. Then, it is shown that the harmonic knowledge acquired by this system can be used creatively in a cognitively inspired conceptual blending model that creates novel harmonic spaces, combining in meaningful ways the various harmonic components of different styles. This system is essentially a proof-of-concept creative model that demonstrates that new concepts can be invented which transcend the initial harmonic input spaces. It is argued that such original creativity is more naturally accommodated in the world of symbolic reasoning that allows links and inferences between diverse concepts at highly abstract levels. Moreover, symbolic representations and processing facilitate interpretability and explanation that are key components of musical knowledge advancement. Finally, reconciling symbolic AI with deep learning may be the way forward to combine the strengths of both approaches toward building more sophisticated robust musical systems that connect sensory auditory data to abstract musical concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, S., Gold, N., & Marsden, A. (2016). Analysing symbolic music with probabilistic grammars. In Computational music analysis (pp. 157–189). Cham: Springer.

    Google Scholar 

  2. Allan, M., & Williams, C. K. I. (2004). Harmonising chorales by probabilistic inference. In Advances in neural information processing systems (Vol. 17, pp. 25–32). MIT Press.

    Google Scholar 

  3. Borrel-Jensen, N., & Hjortgaard Danielsen, A. (2010). Computer-assisted music composition—A database-backed algorithmic composition system. B.S. Thesis, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark. B.S. Thesis.

    Google Scholar 

  4. Cambouropoulos, E., Kaliakatsos-Papakostas, M., & Tsougras, C. (2014). An idiom-independent representation of chords for computational music analysis and generation. In Proceedings of the Joint ICMC-SMC, Athens, Greece.

    Google Scholar 

  5. CHAMELEON. (2020). Retrieved April 22, 2020, from https://ccm.web.auth.gr/chameleonmain.html.

  6. Confalonieri, R., Pease, A., Schorlemmer, M., Besold, T. R., Kutz, O., Maclean, E., & Kaliakatsos-Papakostas, M. (Eds.). (2018). Concept invention: Foundations, implementation, social aspects and applications. Springer.

    Google Scholar 

  7. Dixon, S., Mauch, M., & Anglade, A. (2010). Probabilistic and logic-based modelling of harmony. In International Symposium on Computer Music Modeling and Retrieval (pp. 1–19). Berlin, Heidelberg: Springer.

    Google Scholar 

  8. Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., & Efros, A. A. (2018). Investigating human priors for playing video games. arXiv preprint. arXiv:1802.10217.

  9. Du, Y., & Narasimhan, K. (2019). Task-agnostic dynamics priors for deep reinforcement learning. arXiv preprint. arXiv:1905.04819.

  10. Ebcioglu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music Journal, 12(3), 43–51. ISSN 01489267.

    Google Scholar 

  11. Fauconnier, G., & Turner, M. (2003). The way we think: Conceptual blending and the mind’s hidden complexities. (reprint). New York, NY: Basic Books.

    Google Scholar 

  12. Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Frontiers in Psychology, 4, 667.

    Google Scholar 

  13. Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations. Current Opinion in Behavioral Sciences, 29, 17–23.

    Article  Google Scholar 

  14. Granroth-Wilding, M., & Steedman, M. (2014). A robust parser-interpreter for jazz chord sequences. Journal of New Music Research, 43(4), 355–374.

    Article  Google Scholar 

  15. Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A. (2016). Pixelvae: A latent variable model for natural images. arXiv preprint. arXiv:1611.05013.

  16. Hadjeres, G., Pachet, F., & Nielsen, F. (2017). Deepbach: A steerable model for Bach chorales generation. In Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 1362–1371).

    Google Scholar 

  17. Hanlon, M., & Ledlie, T. (2002). Cpubach: An automatic chorale harmonization system. https://www.timledlie.org/cs/CPUBach.pdf.

  18. Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representations (Vol. 2, No. 5, p. 6).

    Google Scholar 

  19. Hiller, L. A., & Isaacson, L. M. (1979). Experimental music; composition with an electronic computer. Greenwood Publishing Group Inc.

    Google Scholar 

  20. Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019a). Counterpoint by convolution. arXiv preprint. arXiv:1903.07227.

  21. Huang, C.Z.A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., & Howcroft, J. (2019b). The bach doodle: Approachable music composition with machine learning at scale. arXiv preprint. arXiv:1907.06637.

  22. Huron, D. (2016). Voice leading: The science behind a musical art. MIT Press.

    Google Scholar 

  23. Kaliakatsos-Papakostas, M., & Cambouropoulos, E. (2014). Probabilistic harmonisation with fixed intermediate chord constraints. In Proceedings of the Joint ICMC–SMC 2014, Athens, Greece.

    Google Scholar 

  24. Kaliakatsos-Papakostas, M., Makris, D., Tsougras, C., & Cambouropoulos, E. (2016). Learning and creating novel harmonies in diverse musical idioms: An adaptive modular melodic harmonisation system. Journal of Creative Music Systems, 1(1).

    Google Scholar 

  25. Kaliakatsos-Papakostas, M., Queiroz, M., Tsougras, C., & Cambouropoulos, E. (2017). Conceptual blending of harmonic spaces for creative melodic harmonisation. Journal of New Music Research, 46(4), 305–328.

    Article  Google Scholar 

  26. Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint. arXiv:1312.6114.

  27. Koops, H. V., Magalhaes, J. P., & De Haas, W. B. (2013). A functional approach to automatic melody harmonisation. In Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design (pp. 47–58). ACM.

    Google Scholar 

  28. Longuet-Higgins, H. C., & Steedman, M. J. (1971). On interpreting Bach. Machine Intelligence, 6, 221–241.

    Google Scholar 

  29. Longuet-Higgins, H. C., & Lee, C. S. (1984). The rhythmic interpretation of monophonic music. Music Perception, 1(4), 424–441.

    Article  Google Scholar 

  30. Longuet-Higgins, H. C. (1987). Mental processes: Studies in cognitive science. . Cambridge, MA: MIT Press.

    Google Scholar 

  31. Laske, O. E. (1988). Introduction to cognitive musicology. Computer Music Journal, 12(1), 43–57.

    Article  Google Scholar 

  32. Makris, D., Kaliakatsos-Papakostas, M. A., & Cambouropoulos, E. (2015). Probabilistic modular bass voice leading in melodic harmonisation. In Proceedings of ISMIR 2015 (pp. 323–329).

    Google Scholar 

  33. Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint. arXiv:1801.00631.

  34. Meredith, D. (Ed.). (2016). Computational music analysis (Vol. 62). Berlin: Springer.

    Google Scholar 

  35. Miranda, E. R. (Ed.). (2013). Readings in music and artificial intelligence. Routledge.

    Google Scholar 

  36. Nilsson, N. J. (2017). The physical symbol system hypothesis: Status and prospects. SpringerLink, 2007, 9–17. https://doi.org/10.1007/978-3-540-77296-5_2.

    Article  Google Scholar 

  37. Pachet, F., & Roy, P. (2001). Musical harmonization with constraints: A survey. Constraints, 6(1), 7–19.

    Article  MathSciNet  Google Scholar 

  38. Pachet, F., Roy, P., & Barbieri, G. (2011). Finite-length markov processes with constraints. In Twenty-Second International Joint Conference on Artificial Intelligence.

    Google Scholar 

  39. Phon-Amnuaisuk, S., Smaill, A., & Wiggins, G. (2006). Chorale harmonization: A view from a search control perspective. Journal of New Music Research, 35(4), 279–305.

    Article  Google Scholar 

  40. Raphael, C., & Stoddard, J. (2004). Functional harmonic analysis using probabilistic models. Computer Music Journal, 28(3), 45–52.

    Article  Google Scholar 

  41. Simon, I., Morris, D., & Basu, S. (2008). MySong: Automatic accompaniment generation for vocal melodies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 725–734). ACM.

    Google Scholar 

  42. Temperley, D. (2012). Computational models of music cognition. The psychology of music (pp. 327–368).

    Google Scholar 

  43. Thornton, C. (2009). Hierarchical markov modeling for generative music. In Proceedings of the International Computer Music Conference (ICMC2009).

    Google Scholar 

  44. Toiviainen, P. (2013). Symbolic AI versus connectionism in music research. In Readings in music and artificial intelligence (pp. 57–78). Routledge.

    Google Scholar 

  45. Raczynski, S. A., Fukayama, S., & Vincent, E. (2013). Melody harmonization with interpolated probabilistic models. Journal of New Music Research, 42(3), 223–235.

    Article  Google Scholar 

  46. Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018). A hierarchical latent vector model for learning long-term structure in music. arXiv preprint. arXiv:1803.05428.

  47. Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53.

    Article  Google Scholar 

  48. Rosenfeld, A., & Tsotsos, J. K. (2018). Bridging cognitive programs and machine learning. arXiv preprint. arXiv:1802.06091.

  49. Whorley, R. P., Wiggins, G. A., Rhodes, C., & Pearce, M. T. (2013). Multiple viewpoint systems: Time complexity and the construction of domains for complex musical viewpoints in the harmonization problem. Journal of New Music Research, 42(3), 237–266.

    Article  Google Scholar 

  50. Wiggins, G., & Smaill, A. (2013). Musical knowledge: What can artificial intelligence bring to the musician? In Readings in music and artificial intelligence (pp. 39–56). Routledge.

    Google Scholar 

  51. Yi, L., & Goldsmith, J. (2007). Automatic generation of four-part harmony. In K. B. Laskey, S. M. Mahoney, & J. Goldsmith (Eds.), CEUR Workshop Proceedings (p. 268). BMA.

    Google Scholar 

  52. Zacharakis, A., Kaliakatsos-Papakostas, M., Tsougras, C., & Cambouropoulos, E. (2017). Creating musical cadences via conceptual blending: Empirical evaluation and enhancement of a formal model. Music Perception, 35(2), 211–234.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilios Cambouropoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cambouropoulos, E., Kaliakatsos-Papakostas, M. (2021). Cognitive Musicology and Artificial Intelligence: Harmonic Analysis, Learning, and Generation. In: Miranda, E.R. (eds) Handbook of Artificial Intelligence for Music. Springer, Cham. https://doi.org/10.1007/978-3-030-72116-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72116-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72115-2

  • Online ISBN: 978-3-030-72116-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics