Abstract
In this chapter, recent research in the domain of melodic harmonization and computational creativity is presented with a view to highlighting strengths and weaknesses of the classical cognitively inspired symbolic AI approach (often in juxtaposition to contemporary deep learning methodologies). A modular melodic harmonization system that learns chord types, chord transitions, cadences, and bassline voice leading from diverse harmonic datasets is presented. Then, it is shown that the harmonic knowledge acquired by this system can be used creatively in a cognitively inspired conceptual blending model that creates novel harmonic spaces, combining in meaningful ways the various harmonic components of different styles. This system is essentially a proof-of-concept creative model that demonstrates that new concepts can be invented which transcend the initial harmonic input spaces. It is argued that such original creativity is more naturally accommodated in the world of symbolic reasoning that allows links and inferences between diverse concepts at highly abstract levels. Moreover, symbolic representations and processing facilitate interpretability and explanation that are key components of musical knowledge advancement. Finally, reconciling symbolic AI with deep learning may be the way forward to combine the strengths of both approaches toward building more sophisticated robust musical systems that connect sensory auditory data to abstract musical concepts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdallah, S., Gold, N., & Marsden, A. (2016). Analysing symbolic music with probabilistic grammars. In Computational music analysis (pp. 157–189). Cham: Springer.
Allan, M., & Williams, C. K. I. (2004). Harmonising chorales by probabilistic inference. In Advances in neural information processing systems (Vol. 17, pp. 25–32). MIT Press.
Borrel-Jensen, N., & Hjortgaard Danielsen, A. (2010). Computer-assisted music composition—A database-backed algorithmic composition system. B.S. Thesis, Department of Computer Science, University of Copenhagen, Copenhagen, Denmark. B.S. Thesis.
Cambouropoulos, E., Kaliakatsos-Papakostas, M., & Tsougras, C. (2014). An idiom-independent representation of chords for computational music analysis and generation. In Proceedings of the Joint ICMC-SMC, Athens, Greece.
CHAMELEON. (2020). Retrieved April 22, 2020, from https://ccm.web.auth.gr/chameleonmain.html.
Confalonieri, R., Pease, A., Schorlemmer, M., Besold, T. R., Kutz, O., Maclean, E., & Kaliakatsos-Papakostas, M. (Eds.). (2018). Concept invention: Foundations, implementation, social aspects and applications. Springer.
Dixon, S., Mauch, M., & Anglade, A. (2010). Probabilistic and logic-based modelling of harmony. In International Symposium on Computer Music Modeling and Retrieval (pp. 1–19). Berlin, Heidelberg: Springer.
Dubey, R., Agrawal, P., Pathak, D., Griffiths, T. L., & Efros, A. A. (2018). Investigating human priors for playing video games. arXiv preprint. arXiv:1802.10217.
Du, Y., & Narasimhan, K. (2019). Task-agnostic dynamics priors for deep reinforcement learning. arXiv preprint. arXiv:1905.04819.
Ebcioglu, K. (1988). An expert system for harmonizing four-part chorales. Computer Music Journal, 12(3), 43–51. ISSN 01489267.
Fauconnier, G., & Turner, M. (2003). The way we think: Conceptual blending and the mind’s hidden complexities. (reprint). New York, NY: Basic Books.
Feinberg, T. E., & Mallatt, J. (2013). The evolutionary and genetic origins of consciousness in the Cambrian Period over 500 million years ago. Frontiers in Psychology, 4, 667.
Garnelo, M., & Shanahan, M. (2019). Reconciling deep learning with symbolic artificial intelligence: Representing objects and relations. Current Opinion in Behavioral Sciences, 29, 17–23.
Granroth-Wilding, M., & Steedman, M. (2014). A robust parser-interpreter for jazz chord sequences. Journal of New Music Research, 43(4), 355–374.
Gulrajani, I., Kumar, K., Ahmed, F., Taiga, A. A., Visin, F., Vazquez, D., & Courville, A. (2016). Pixelvae: A latent variable model for natural images. arXiv preprint. arXiv:1611.05013.
Hadjeres, G., Pachet, F., & Nielsen, F. (2017). Deepbach: A steerable model for Bach chorales generation. In Proceedings of the 34th International Conference on Machine Learning (Vol. 70, pp. 1362–1371).
Hanlon, M., & Ledlie, T. (2002). Cpubach: An automatic chorale harmonization system. https://www.timledlie.org/cs/CPUBach.pdf.
Higgins, I., Matthey, L., Pal, A., Burgess, C., Glorot, X., Botvinick, M., Mohamed, S., & Lerchner, A. (2017). beta-VAE: Learning basic visual concepts with a constrained variational framework. In International Conference on Learning Representations (Vol. 2, No. 5, p. 6).
Hiller, L. A., & Isaacson, L. M. (1979). Experimental music; composition with an electronic computer. Greenwood Publishing Group Inc.
Huang, C. Z. A., Cooijmans, T., Roberts, A., Courville, A., & Eck, D. (2019a). Counterpoint by convolution. arXiv preprint. arXiv:1903.07227.
Huang, C.Z.A., Hawthorne, C., Roberts, A., Dinculescu, M., Wexler, J., Hong, L., & Howcroft, J. (2019b). The bach doodle: Approachable music composition with machine learning at scale. arXiv preprint. arXiv:1907.06637.
Huron, D. (2016). Voice leading: The science behind a musical art. MIT Press.
Kaliakatsos-Papakostas, M., & Cambouropoulos, E. (2014). Probabilistic harmonisation with fixed intermediate chord constraints. In Proceedings of the Joint ICMC–SMC 2014, Athens, Greece.
Kaliakatsos-Papakostas, M., Makris, D., Tsougras, C., & Cambouropoulos, E. (2016). Learning and creating novel harmonies in diverse musical idioms: An adaptive modular melodic harmonisation system. Journal of Creative Music Systems, 1(1).
Kaliakatsos-Papakostas, M., Queiroz, M., Tsougras, C., & Cambouropoulos, E. (2017). Conceptual blending of harmonic spaces for creative melodic harmonisation. Journal of New Music Research, 46(4), 305–328.
Kingma, D. P., & Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint. arXiv:1312.6114.
Koops, H. V., Magalhaes, J. P., & De Haas, W. B. (2013). A functional approach to automatic melody harmonisation. In Proceedings of the First ACM SIGPLAN Workshop on Functional Art, Music, Modeling & Design (pp. 47–58). ACM.
Longuet-Higgins, H. C., & Steedman, M. J. (1971). On interpreting Bach. Machine Intelligence, 6, 221–241.
Longuet-Higgins, H. C., & Lee, C. S. (1984). The rhythmic interpretation of monophonic music. Music Perception, 1(4), 424–441.
Longuet-Higgins, H. C. (1987). Mental processes: Studies in cognitive science. . Cambridge, MA: MIT Press.
Laske, O. E. (1988). Introduction to cognitive musicology. Computer Music Journal, 12(1), 43–57.
Makris, D., Kaliakatsos-Papakostas, M. A., & Cambouropoulos, E. (2015). Probabilistic modular bass voice leading in melodic harmonisation. In Proceedings of ISMIR 2015 (pp. 323–329).
Marcus, G. (2018). Deep learning: A critical appraisal. arXiv preprint. arXiv:1801.00631.
Meredith, D. (Ed.). (2016). Computational music analysis (Vol. 62). Berlin: Springer.
Miranda, E. R. (Ed.). (2013). Readings in music and artificial intelligence. Routledge.
Nilsson, N. J. (2017). The physical symbol system hypothesis: Status and prospects. SpringerLink, 2007, 9–17. https://doi.org/10.1007/978-3-540-77296-5_2.
Pachet, F., & Roy, P. (2001). Musical harmonization with constraints: A survey. Constraints, 6(1), 7–19.
Pachet, F., Roy, P., & Barbieri, G. (2011). Finite-length markov processes with constraints. In Twenty-Second International Joint Conference on Artificial Intelligence.
Phon-Amnuaisuk, S., Smaill, A., & Wiggins, G. (2006). Chorale harmonization: A view from a search control perspective. Journal of New Music Research, 35(4), 279–305.
Raphael, C., & Stoddard, J. (2004). Functional harmonic analysis using probabilistic models. Computer Music Journal, 28(3), 45–52.
Simon, I., Morris, D., & Basu, S. (2008). MySong: Automatic accompaniment generation for vocal melodies. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 725–734). ACM.
Temperley, D. (2012). Computational models of music cognition. The psychology of music (pp. 327–368).
Thornton, C. (2009). Hierarchical markov modeling for generative music. In Proceedings of the International Computer Music Conference (ICMC2009).
Toiviainen, P. (2013). Symbolic AI versus connectionism in music research. In Readings in music and artificial intelligence (pp. 57–78). Routledge.
Raczynski, S. A., Fukayama, S., & Vincent, E. (2013). Melody harmonization with interpolated probabilistic models. Journal of New Music Research, 42(3), 223–235.
Roberts, A., Engel, J., Raffel, C., Hawthorne, C., & Eck, D. (2018). A hierarchical latent vector model for learning long-term structure in music. arXiv preprint. arXiv:1803.05428.
Rohrmeier, M. (2011). Towards a generative syntax of tonal harmony. Journal of Mathematics and Music, 5(1), 35–53.
Rosenfeld, A., & Tsotsos, J. K. (2018). Bridging cognitive programs and machine learning. arXiv preprint. arXiv:1802.06091.
Whorley, R. P., Wiggins, G. A., Rhodes, C., & Pearce, M. T. (2013). Multiple viewpoint systems: Time complexity and the construction of domains for complex musical viewpoints in the harmonization problem. Journal of New Music Research, 42(3), 237–266.
Wiggins, G., & Smaill, A. (2013). Musical knowledge: What can artificial intelligence bring to the musician? In Readings in music and artificial intelligence (pp. 39–56). Routledge.
Yi, L., & Goldsmith, J. (2007). Automatic generation of four-part harmony. In K. B. Laskey, S. M. Mahoney, & J. Goldsmith (Eds.), CEUR Workshop Proceedings (p. 268). BMA.
Zacharakis, A., Kaliakatsos-Papakostas, M., Tsougras, C., & Cambouropoulos, E. (2017). Creating musical cadences via conceptual blending: Empirical evaluation and enhancement of a formal model. Music Perception, 35(2), 211–234.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Cambouropoulos, E., Kaliakatsos-Papakostas, M. (2021). Cognitive Musicology and Artificial Intelligence: Harmonic Analysis, Learning, and Generation. In: Miranda, E.R. (eds) Handbook of Artificial Intelligence for Music. Springer, Cham. https://doi.org/10.1007/978-3-030-72116-9_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-72116-9_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72115-2
Online ISBN: 978-3-030-72116-9
eBook Packages: Computer ScienceComputer Science (R0)