Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Rethink Training of BERT Rerankers in Multi-stage Retrieval Pipeline

  • Conference paper
  • First Online:
Advances in Information Retrieval (ECIR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12657))

Included in the following conference series:

Abstract

Pre-trained deep language modelsĀ (LM) have advanced the state-of-the-art of text retrieval. Rerankers fine-tuned from deep LM estimates candidate relevance based on rich contextualized matching signals. Meanwhile, deep LMs can also be leveraged to improve search index, building retrievers with better recall. One would expect a straightforward combination of both in a pipeline to have additive performance gain. In this paper, we discover otherwise and that popular reranker cannot fully exploit the improved retrieval result. We, therefore, propose a Localized Contrastive Estimation (LCE) for training rerankers and demonstrate it significantly improves deep two-stage models (Our codes are open sourced at https://github.com/luyug/Reranker.).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://microsoft.github.io/msmarco/.

  2. 2.

    https://github.com/castorini/anserini.

  3. 3.

    http://boston.lti.cs.cmu.edu/appendices/TheWebConf2020-Zhuyun-Dai/.

  4. 4.

    On the camera ready date (January 20th, 2021).

References

  1. Campos, D.F., et al.: Ms marco: A human generated machine reading comprehension dataset. arXiv:abs/1611.09268 (2016)

  2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. arXiv:abs/2002.05709 (2020)

  3. Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: pre-training text encoders as discriminators rather than generators. arXiv:abs/2003.10555 (2020)

  4. Dai, Z., Callan, J.: Deeper text understanding for ir with contextual neural language modeling. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019)

    Google ScholarĀ 

  5. Dai, Z., Callan, J.P.: Context-aware document term weighting for ad-hoc search. In: Proceedings of The Web Conference 2020 (2020)

    Google ScholarĀ 

  6. Dai, Z., Callan, J.: Context-aware term weighting for first stage passage retrieval. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (2020)

    Google ScholarĀ 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)

    Google ScholarĀ 

  8. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735ā€“1742 (2006)

    Google ScholarĀ 

  9. Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv:abs/1907.11692 (2019)

  10. Nogueira, R., Cho, K.: Passage re-ranking with Bert. arXiv:abs/1901.04085 (2019)

  11. Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with bert. ArXiv abs/1910.14424 (2019)

    Google ScholarĀ 

  12. Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction. arXiv:abs/1904.08375 (2019)

  13. Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024ā€“8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

  14. Peters, M.E., et al.: Deep contextualized word representations. arXiv:abs/1802.05365 (2018)

  15. Wolf, T., et al.: Huggingfaceā€™s transformers: state-of-the-art natural language processing. arXiv:abs/1910.03771 (2019)

  16. Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733ā€“3742 (2018)

    Google ScholarĀ 

  17. Yang, P., Fang, H., Lin, J.: Anserini: enabling the use of Lucene for information retrieval research. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (2017)

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyu Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, L., Dai, Z., Callan, J. (2021). Rethink Training of BERT Rerankers in Multi-stage Retrieval Pipeline. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-72240-1_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-72239-5

  • Online ISBN: 978-3-030-72240-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics