Abstract
Pre-trained deep language modelsĀ (LM) have advanced the state-of-the-art of text retrieval. Rerankers fine-tuned from deep LM estimates candidate relevance based on rich contextualized matching signals. Meanwhile, deep LMs can also be leveraged to improve search index, building retrievers with better recall. One would expect a straightforward combination of both in a pipeline to have additive performance gain. In this paper, we discover otherwise and that popular reranker cannot fully exploit the improved retrieval result. We, therefore, propose a Localized Contrastive Estimation (LCE) for training rerankers and demonstrate it significantly improves deep two-stage models (Our codes are open sourced at https://github.com/luyug/Reranker.).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
On the camera ready date (January 20th, 2021).
References
Campos, D.F., et al.: Ms marco: A human generated machine reading comprehension dataset. arXiv:abs/1611.09268 (2016)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. arXiv:abs/2002.05709 (2020)
Clark, K., Luong, M.T., Le, Q.V., Manning, C.D.: Electra: pre-training text encoders as discriminators rather than generators. arXiv:abs/2003.10555 (2020)
Dai, Z., Callan, J.: Deeper text understanding for ir with contextual neural language modeling. In: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (2019)
Dai, Z., Callan, J.P.: Context-aware document term weighting for ad-hoc search. In: Proceedings of The Web Conference 2020 (2020)
Dai, Z., Callan, J.: Context-aware term weighting for first stage passage retrieval. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. In: NAACL-HLT (2019)
Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 1735ā1742 (2006)
Liu, Y., et al.: Roberta: a robustly optimized Bert pretraining approach. arXiv:abs/1907.11692 (2019)
Nogueira, R., Cho, K.: Passage re-ranking with Bert. arXiv:abs/1901.04085 (2019)
Nogueira, R., Yang, W., Cho, K., Lin, J.: Multi-stage document ranking with bert. ArXiv abs/1910.14424 (2019)
Nogueira, R., Yang, W., Lin, J., Cho, K.: Document expansion by query prediction. arXiv:abs/1904.08375 (2019)
Paszke, A., et al.: Pytorch: An imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32, pp. 8024ā8035. Curran Associates, Inc. (2019). http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
Peters, M.E., et al.: Deep contextualized word representations. arXiv:abs/1802.05365 (2018)
Wolf, T., et al.: Huggingfaceās transformers: state-of-the-art natural language processing. arXiv:abs/1910.03771 (2019)
Wu, Z., Xiong, Y., Yu, S., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3733ā3742 (2018)
Yang, P., Fang, H., Lin, J.: Anserini: enabling the use of Lucene for information retrieval research. In: Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, L., Dai, Z., Callan, J. (2021). Rethink Training of BERT Rerankers in Multi-stage Retrieval Pipeline. In: Hiemstra, D., Moens, MF., Mothe, J., Perego, R., Potthast, M., Sebastiani, F. (eds) Advances in Information Retrieval. ECIR 2021. Lecture Notes in Computer Science(), vol 12657. Springer, Cham. https://doi.org/10.1007/978-3-030-72240-1_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-72240-1_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72239-5
Online ISBN: 978-3-030-72240-1
eBook Packages: Computer ScienceComputer Science (R0)