Abstract
The coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern affecting more than 200 countries and territories worldwide. As of September 30, 2020, it has caused a pandemic outbreak with more than 33 million confirmed infections, and more than 1 million reported deaths worldwide. Several statistical, machine learning, and hybrid models have previously been applied to forecast COVID-19 confirmed cases for profoundly affected countries. Future predictions of daily COVID-19 cases are useful for the effective allocation of healthcare resources and will act as an early-warning system for government policymakers. However, due to the presence of extreme uncertainty in these time series datasets, forecasting of COVID-19 confirmed cases has become a very challenging job. For univariate time series forecasting, there are various statistical and machine learning models available in the literature. Still, nowcasting and forecasting of COVID-19 cases are difficult due to insufficient input data, flaw in modeling assumptions, lack of epidemiological features, inadequate past evidence on effects of available interventions, and lack of transparency. This chapter focuses on assessing different short-term forecasting models that are popularly used to forecast the daily COVID-19 cases for various countries. This chapter provides strong empirical evidence that there is no universal method available that can accurately forecast pandemic data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aleta, A., Martin-Corral, D., Piontti, A.P., Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N.E., Halloran, M.E., Longini Jr, I.M., Merler, S., et al.: Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the Covid-19 epidemic. medRxiv (2020)
Aminghafari, M., Poggi, J.M.: Forecasting time series using wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 5(05), 709–724 (2007)
Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.: Data-based analysis, modelling and forecasting of the Covid-19 outbreak. PLoS ONE 15(3) (2020)
Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)
Annas, S., Pratama, M.I., Rifandi, M., Sanusi, W., Side, S.: Stability analysis and numerical simulation of Seir model for pandemic Covid-19 spread in Indonesia. Chaos, Solitons Fractals 139 (2020)
Antonio, F.D.N., Hegger, H.K., Schreiber, T., Di Narzo, M.A.F.: Package ‘tserieschaos’. dimension 1 (2013)
Armstrong, J.S.: Principles of Forecasting: A Handbook for Researchers and Practitioners, vol 30. Springer Science & Business Media (2001)
Assimakopoulos, V., Nikolopoulos, K.: The theta model: a decomposition approach to forecasting. Int. J. Forecast. 16(4), 521–530 (2000)
Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451–468 (1969)
Baud, D., Qi, X., Nielsen-Saines, K., Musso, D., Pomar, L., Favre, G.: Real estimates of mortality following Covid-19 infection. Lancet Infect, Dis (2020)
Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: Theory. Meccanica 15(1), 9–20 (1980)
Black, R., Hurst, H., Simaika, Y.: Long-term storage: an experimental study. Constable (1965)
Borchers, H.W., Borchers, M.H.W.: Package ‘pracma’ (2019)
Bordley, R.F.: The combination of forecasts: a Bayesian approach. J. Oper. Res. Soc. 33(2), 171–174 (1982)
Box, G.E., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)
Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, New York (2015)
Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W., Hay, S.I.: Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6(8) (2012)
Brockwell, P.J., Davis, R.A,. Fienberg, S.E.: Time Series: Theory and Methods: Theory and Methods. Springer Science & Business Media (1991)
Buczak, A.L., Baugher, B., Moniz, L.J., Bagley, T., Babin, S.M., Guven, E.: Ensemble method for dengue prediction. PLoS ONE 13(1) (2018)
Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (Covid-19) cases: A data-driven analysis, p. 135. Chaos, Solitons and Fractals (2020)
Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting Dengue Epidemics Using a Hybrid Methodology. Physica A: Statistical Mechanics and its Applications, p. 121266 (2019)
Chakraborty, T., Bhattacharyya, A., Pattnaik, M.: Theta autoregressive neural network model for Covid-19 outbreak predictions. medRxiv (2020)
Chatfield, C.: Time-Series Forecasting. CRC Press, Boca Raton (2000)
Chatfield, C.: The Analysis of Time Series: An Introduction. Chapman and Hall/CRC (2016)
Chen, Y.C., Lu, P.E., Chang, C.S., Liu, T.H.: A time-dependent sir model for Covid-19 with undetectable infected persons. IEEE Trans. Netw. Sci, Eng (2020)
Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)
De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)
De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)
Di Narzo, A.F., Aznarte, J.L., Stigler, M.: Package ’tsdyn’ (2020)
Emanuel, E.J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., Zhang, C., Boyle, C., Smith, M., Phillips, J.P.: Fair allocation of scarce medical resources in the time of Covid-19 (2020)
Fanelli, D., Piazza, F.: Analysis and forecast of Covid-19 spreading in China, Italy and France. Chaos, Solitons Fractals 134 (2020)
Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 47(2), 231–250 (1998)
Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D 4(3), 366–393 (1982)
Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59(8), 845 (1987)
Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., et al.: Report 9: Impact of non-pharmaceutical interventions (npis) to reduce Covid19 mortality and healthcare demand (2020)
Franses, P.H., Van Dijk, D., et al.: Non-linear Time Series Models in Empirical Finance. Cambridge University Press, Cambridge (2000)
Garcia, C., Sawitzki, G.: Nonlinear tseries: nonlinear time series analysis (2015)
Ghosh, I., Chakraborty, T.: An integrated deterministic-stochastic approach for forecasting the long-term trajectories of Covid-19 (2020). medRxiv preprint https://doi.org/101101/202005
Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press Cambridge, Cambridge (2016)
Granger, C.W., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)
Granger, C.W., Ramanathan, R.: Improved methods of combining forecasts. J. Forecast. 3(2), 197–204 (1984)
Grasselli, G., Pesenti, A., Cecconi, M.: Critical care utilization for the Covid-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 323(16), 1545–1546 (2020)
Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. J. R. Stat. Soc. Ser. D (The Statistician) 33(4), 391–399 (1984)
Guan, W.J., Zy, N.I., Hu, Y., Liang, W.h., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S., et al.: Clinical characteristics of Coronavirus disease 2019 in China. N. Engl. J. Med. 382(18), 1708–1720 (2020)
Hanke, J.E., Reitsch, A.G., Wichern, D.W.: Business Forecasting, Vol. 9. Prentice Hall New Jersey (2001)
Haslett, J., Raftery, A.E.: Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 38(1), 1–21 (1989)
Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media (2009)
He, S., Peng, Y., Sun, K.: Seir modeling of the Covid-19 and its dynamics. Nonlinear Dyn. 1–14 (2020)
Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the Tisean package. Chaos: Interdisc. J. Nonlinear Sci. 9(2), 413–435 (1999)
Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis, C.I., Russell, T.W., Munday, J.D., Kucharski, A.J., Edmunds, W.J., Sun, F., et al.: Feasibility of controlling Covid-19 outbreaks by isolation of cases and contacts. Lancet Global Health (2020)
Holmdahl, I., Buckee, C.: Wrong but useful-what Covid-19 epidemiologic models can and cannot tell us. New Engl. J, Med (2020)
Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo, Y., Zhang, S., Jia, Q., Zhao, C., et al.: The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (Covid-19): a well-mixed seir model analysis. J. Med, Virol (2020)
Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of Covid-19 in China (2020). arXiv preprint arXiv:200207112
Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al.: Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet 395(10223), 497–506 (2020)
Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer Science & Business Media (2008)
Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts (2018)
Hyndman, R.J., Billah, B.: Unmasking the theta method. Int. J. Forecast. 19(2), 287–290 (2003)
Hyndman, R.J., Khandakar, Y., et al.: Automatic Time Series for Forecasting: The Forecast Package for R. 6/07, Monash University, Department of Econometrics and Business Statistics (2007)
Hyndman, R.J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E.: Package ‘forecast’ (2020). Https://cran.r-project.org/web/packages/forecast/forecast
Ioannidis, J.P., Cripps, S., Tanner, M.A.: Forecasting for Covid-19 has failed. Int. J. Forecast. (2020)
James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to Statistical Learning, Vol. 112. Springer (2013)
Jammalamadaka, S.R., Qiu, J., Ning, N.: Multivariate bayesian structural time series model. J. Mach. Learn. Res. 19(1), 2744–2776 (2018)
Kantz, H., Schreiber, T.: Nonlinear time series analysis, vol. 7. Cambridge University Press, Cambridge (2004)
Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)
Kim, H.Y.: Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentist. Endodontics 38(1), 52–54 (2013)
Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H., Lipsitch, M.: Projecting the transmission dynamics of sars-cov-2 through the postpandemic period. Science 368(6493), 860–868 (2020)
Kourentzes, N.: Nnfor: Time series forecasting with neural networks (2017a)
Kourentzes, N.: nnfor: Time series forecasting with neural networks. r package version 0.9. 6 (2017b)
Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., et al.: Early dynamics of transmission and control of covid-19: a mathematical modelling study. Lancet Infect, Dis (2020)
Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10–12), 2006–2016 (2010)
Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44(1), 117–130 (2015)
Li, Q., Feng, W., Quan, Y.H.: Trend and forecasting of the Covid-19 outbreak in China. J. Infect. 80(4), 469–496 (2020)
López, L., Rodó, X.: The end of social confinement and covid-19 re-emergence risk. Nat. Hum. Behav. 4(7), 746–755 (2020)
Makridakis, S., Hibon, M.: Arma models and the box-jenkins methodology. J. Forecast. 16(3), 147–163 (1997)
Maleki, M., Mahmoudi, M.R., Wraith, D., Pho, K.H.: Time series modelling to forecast the confirmed and recovered cases of Covid-19. Travel Med. Infect. Dis. 101742 (2020)
Messina, J.P., Brady, O.J., Scott, T.W., Zou, C., Pigott, D.M., Duda, K.A., Bhatt, S., Katzelnick, L., Howes, R.E., Battle, K.E., et al.: Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22(3), 138–146 (2014)
Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., Lin, C.C., Meyer, M.D.: Package ‘e1071’. R J. (2019)
Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: Fforma: Feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92 (2020)
Mood, A.M.: Introduction to the Theory of Statistics. McGraw-Hill (1950)
Mosleh, A., Apostolakis, G.: The assessment of probability distributions from expert opinions with an application to seismic fragility curves. Risk Anal. 6(4), 447–461 (1986)
Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), (2008)
Nury, A.H., Hasan, K., Alam, M.J.B.: Comparative study of wavelet-arima and wavelet-ann models for temperature time series data in northeastern bangladesh. J. King Saud Univ.-Sci. 29(1), 47–61 (2017)
Paul, R.K., Samanta, S., Paul, M.R.K., LazyData, T.: Package ‘waveletarima’. Seed 500, 1–5 (2017)
Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis, Vol. 4. Cambridge University Press (2000)
Petersen, E., Koopmans, M., Go, U., Hamer, D.H., Petrosillo, N., Castelli, F., Storgaard, M., Al Khalili, S., Simonsen, L.: Comparing sars-cov-2 with sars-cov and influenza pandemics. Lancet Infect, Dis (2020)
Peterson, B.G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., et al.: Package ‘performanceanalytics’. R Team Cooperation (2018)
Petropoulos, F., Makridakis, S.: Forecasting the novel coronavirus Covid-19. PLoS ONE 15(3) (2020)
Philemon, M.D., Ismail, Z., Dare, J.: A review of epidemic forecasting using artificial neural networks. Int. J. Epidemiol. Res. 6(3), 132–143 (2019)
Phillips, P.C., Perron, P.: Testing for a unit root in time series regression. Biometrika 75(2), 335–346 (1988)
Pumi, G., Valk, M., Bisognin, C., Bayer, F.M., Prass, T.S.: Beta autoregressive fractionally integrated moving average models. J. Stat. Plann. Inference 200, 196–212 (2019)
Rajgor, D.D., Lee, M.H., Archuleta, S., Bagdasarian, N., Quek, S.C.: The many estimates of the covid-19 case fatality rate. Lancet. Infect. Dis 20(7), 776–777 (2020)
Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., et al.: Predictions, role of interventions and effects of a historic national lockdown in india’s response to the covid-19 pandemic: data science call to arms. Harvard Data Sci. Rev. 2020(Suppl 1), (2020)
Ribeiro, M.H.D.M., da Silva, R.G., Mariani, V.C., dos Santos Coelho, L.: Short-term forecasting covid-19 cumulative confirmed cases: perspectives for brazil. Chaos, Solitons Fractals, 109853 (2020)
Robinson, P.M.: Log-periodogram regression of time series with long range dependence. Ann. Stat. 1048–1072 (1995)
Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J., Yan, P., Chowell, G.: Real-time forecasts of the covid-19 epidemic in China from february 5th to february 24th, 2020. Infect. Dis. Modell. 5, 256–263 (2020)
Rosenbaum, L.: Facing Covid-19 in Italy-ethics, logistics, and therapeutics on the epidemic’s front line. N. Engl. J. Med. 382(20), 1873–1875 (2020)
Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest lyapunov exponents from small data sets. Phys. D 65(1–2), 117–134 (1993)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Tech. rep (1985)
Scott, S.L., Varian, H.R.: Bayesian variable selection for nowcasting economic time series. Tech. rep, National Bureau of Economic Research (2013)
Scott, S.L., Varian, H.R.: Predicting the present with bayesian structural time series. Int. J. Math. Modell. Numer. Optim. 5(1–2), 4–23 (2014)
Scott, S.L., Scott, M.S.L., Scott, M.S., BoomSpikeSlab, D., Boom, L.: Package ‘bsts’ (2020)
Shaub, D.: Fast and accurate yearly time series forecasting with forecast combinations. Int. J. Forecast. 36(1), 116–120 (2020)
Shaub, D., Ellis, P.: forecasthybrid: Convenient functions for ensemble time series forecasts. R package: https://CRANR-projectorg/package=forecastHybrid 4(17), 238 (2019)
Shin, Y., Schmidt, P.: The kpss stationarity test as a unit root test. Econ. Lett. 38(4), 387–392 (1992)
Smith, J., Wallis, K.F.: A simple explanation of the forecast combination puzzle. Oxford Bull. Econ. Stat. 71(3), 331–355 (2009)
Spiliotis, E., Assimakopoulos, V., Makridakis, S.: Generalizing the theta method for automatic forecasting. Eur. J. Oper. Res. 284(2), 550–558 (2020)
Sujath, R., Chatterjee, J.M., Hassanien, A.E.: A machine learning forecasting model for covid-19 pandemic in India. Stochastic Environmental Research and Risk Assessment p. 1 (2020)
Teräsvirta, T., Lin, C.F., Granger, C.W.: Power of the neural network linearity test. J. Time Ser. Anal. 14(2), 209–220 (1993)
Teräsvirta, T., Van Dijk, D., Medeiros, M.C.: Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: a re-examination. Int. J. Forecast. 21(4), 755–774 (2005)
Timmermann, A.: Forecast combinations. handbook of economic forecasting (2006)
Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press (1990)
Tong, H.: Nonlinear time series analysis since 1990: Some personal reflections. Acta Math. Appl. Sin. 18(2), 177 (2002)
Trapletti, A., Hornik, K., LeBaron, B.: tseries: Time series analysis and computational finance. R package version 010–11 (2007)
Trilla, A., Trilla, G., Daer, C.: The 1918 “spanish flu” in spain. Clin. Infect. Dis. 47(5), 668–673 (2008)
Tsay, R.S.: Nonlinearity tests for time series. Biometrika 73(2), 461–466 (1986)
Tsay, R.S.: Time series and forecasting: Brief history and future research. J. Am. Stat. Assoc. 95(450), 638–643 (2000)
Wang, W.S.: Multiple time scales analysis of hydrological time series with wavelet transform. J. Sichuan Univ. Eng. Sci. Edn. 34(6), 14–17 (2002)
Wang, X., Smith-Miles, K., Hyndman, R.: Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series. Neurocomputing 72(10–12), 2581–2594 (2009)
Weinberger, D.M., Cohen, T., Crawford, F.W., Mostashari, F., Olson, D., Pitzer, V.E., Reich, N.G., Russi, M., Simonsen, L., Watkins, A., et al.: Estimating the early death toll of covid-19 in the United States. bioRxiv (2020)
Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324–342 (1960)
Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)
Wu, J.T., Leung, K., Leung, G.M.: Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. Lancet 395(10225), 689–697 (2020)
Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)
Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)
Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2), 501–514 (2005)
Zhuang, Z., Cao, P., Zhao, S., Lou, Y., Wang, W., Yang, S., Yang, L., He, D.: Estimation of local novel coronavirus (covid-19) cases in wuhan, china from off-site reported cases and population flow data from different sources. medRxiv (2020)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Chakraborty, T., Ghosh, I., Mahajan, T., Arora, T. (2022). Nowcasting of COVID-19 Confirmed Cases: Foundations, Trends, and Challenges. In: Azar, A.T., Hassanien, A.E. (eds) Modeling, Control and Drug Development for COVID-19 Outbreak Prevention. Studies in Systems, Decision and Control, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-72834-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-72834-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-72833-5
Online ISBN: 978-3-030-72834-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)