Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nowcasting of COVID-19 Confirmed Cases: Foundations, Trends, and Challenges

  • Chapter
  • First Online:
Modeling, Control and Drug Development for COVID-19 Outbreak Prevention

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 366))

  • 929 Accesses

Abstract

The coronavirus disease 2019 (COVID-19) has become a public health emergency of international concern affecting more than 200 countries and territories worldwide. As of September 30, 2020, it has caused a pandemic outbreak with more than 33 million confirmed infections, and more than 1 million reported deaths worldwide. Several statistical, machine learning, and hybrid models have previously been applied to forecast COVID-19 confirmed cases for profoundly affected countries. Future predictions of daily COVID-19 cases are useful for the effective allocation of healthcare resources and will act as an early-warning system for government policymakers. However, due to the presence of extreme uncertainty in these time series datasets, forecasting of COVID-19 confirmed cases has become a very challenging job. For univariate time series forecasting, there are various statistical and machine learning models available in the literature. Still, nowcasting and forecasting of COVID-19 cases are difficult due to insufficient input data, flaw in modeling assumptions, lack of epidemiological features, inadequate past evidence on effects of available interventions, and lack of transparency. This chapter focuses on assessing different short-term forecasting models that are popularly used to forecast the daily COVID-19 cases for various countries. This chapter provides strong empirical evidence that there is no universal method available that can accurately forecast pandemic data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aleta, A., Martin-Corral, D., Piontti, A.P., Ajelli, M., Litvinova, M., Chinazzi, M., Dean, N.E., Halloran, M.E., Longini Jr, I.M., Merler, S., et al.: Modeling the impact of social distancing, testing, contact tracing and household quarantine on second-wave scenarios of the Covid-19 epidemic. medRxiv (2020)

    Google Scholar 

  2. Aminghafari, M., Poggi, J.M.: Forecasting time series using wavelets. Int. J. Wavelets Multiresolut. Inf. Process. 5(05), 709–724 (2007)

    MathSciNet  Google Scholar 

  3. Anastassopoulou, C., Russo, L., Tsakris, A., Siettos, C.: Data-based analysis, modelling and forecasting of the Covid-19 outbreak. PLoS ONE 15(3) (2020)

    Google Scholar 

  4. Anderson, R.M., Anderson, B., May, R.M.: Infectious Diseases of Humans: Dynamics and Control. Oxford University Press, Oxford (1992)

    Google Scholar 

  5. Annas, S., Pratama, M.I., Rifandi, M., Sanusi, W., Side, S.: Stability analysis and numerical simulation of Seir model for pandemic Covid-19 spread in Indonesia. Chaos, Solitons Fractals 139 (2020)

    Google Scholar 

  6. Antonio, F.D.N., Hegger, H.K., Schreiber, T., Di Narzo, M.A.F.: Package ‘tserieschaos’. dimension 1 (2013)

    Google Scholar 

  7. Armstrong, J.S.: Principles of Forecasting: A Handbook for Researchers and Practitioners, vol 30. Springer Science & Business Media (2001)

    Google Scholar 

  8. Assimakopoulos, V., Nikolopoulos, K.: The theta model: a decomposition approach to forecasting. Int. J. Forecast. 16(4), 521–530 (2000)

    Google Scholar 

  9. Bates, J.M., Granger, C.W.: The combination of forecasts. J. Oper. Res. Soc. 20(4), 451–468 (1969)

    Google Scholar 

  10. Baud, D., Qi, X., Nielsen-Saines, K., Musso, D., Pomar, L., Favre, G.: Real estimates of mortality following Covid-19 infection. Lancet Infect, Dis (2020)

    Google Scholar 

  11. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them, part 1: Theory. Meccanica 15(1), 9–20 (1980)

    Google Scholar 

  12. Black, R., Hurst, H., Simaika, Y.: Long-term storage: an experimental study. Constable (1965)

    Google Scholar 

  13. Borchers, H.W., Borchers, M.H.W.: Package ‘pracma’ (2019)

    Google Scholar 

  14. Bordley, R.F.: The combination of forecasts: a Bayesian approach. J. Oper. Res. Soc. 33(2), 171–174 (1982)

    MathSciNet  Google Scholar 

  15. Box, G.E., Pierce, D.A.: Distribution of residual autocorrelations in autoregressive-integrated moving average time series models. J. Am. Stat. Assoc. 65(332), 1509–1526 (1970)

    MathSciNet  Google Scholar 

  16. Box, G.E., Jenkins, G.M., Reinsel, G.C., Ljung, G.M.: Time Series Analysis: Forecasting and Control. Wiley, New York (2015)

    Google Scholar 

  17. Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W., Hay, S.I.: Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl. Trop. Dis. 6(8) (2012)

    Google Scholar 

  18. Brockwell, P.J., Davis, R.A,. Fienberg, S.E.: Time Series: Theory and Methods: Theory and Methods. Springer Science & Business Media (1991)

    Google Scholar 

  19. Buczak, A.L., Baugher, B., Moniz, L.J., Bagley, T., Babin, S.M., Guven, E.: Ensemble method for dengue prediction. PLoS ONE 13(1) (2018)

    Google Scholar 

  20. Chakraborty, T., Ghosh, I.: Real-time forecasts and risk assessment of novel coronavirus (Covid-19) cases: A data-driven analysis, p. 135. Chaos, Solitons and Fractals (2020)

    Google Scholar 

  21. Chakraborty, T., Chattopadhyay, S., Ghosh, I.: Forecasting Dengue Epidemics Using a Hybrid Methodology. Physica A: Statistical Mechanics and its Applications, p. 121266 (2019)

    Google Scholar 

  22. Chakraborty, T., Bhattacharyya, A., Pattnaik, M.: Theta autoregressive neural network model for Covid-19 outbreak predictions. medRxiv (2020)

    Google Scholar 

  23. Chatfield, C.: Time-Series Forecasting. CRC Press, Boca Raton (2000)

    Google Scholar 

  24. Chatfield, C.: The Analysis of Time Series: An Introduction. Chapman and Hall/CRC (2016)

    Google Scholar 

  25. Chen, Y.C., Lu, P.E., Chang, C.S., Liu, T.H.: A time-dependent sir model for Covid-19 with undetectable infected persons. IEEE Trans. Netw. Sci, Eng (2020)

    Google Scholar 

  26. Clemen, R.T.: Combining forecasts: a review and annotated bibliography. Int. J. Forecast. 5(4), 559–583 (1989)

    Google Scholar 

  27. De Gooijer, J.G., Hyndman, R.J.: 25 years of time series forecasting. Int. J. Forecast. 22(3), 443–473 (2006)

    Google Scholar 

  28. De Livera, A.M., Hyndman, R.J., Snyder, R.D.: Forecasting time series with complex seasonal patterns using exponential smoothing. J. Am. Stat. Assoc. 106(496), 1513–1527 (2011)

    MathSciNet  Google Scholar 

  29. Di Narzo, A.F., Aznarte, J.L., Stigler, M.: Package ’tsdyn’ (2020)

    Google Scholar 

  30. Emanuel, E.J., Persad, G., Upshur, R., Thome, B., Parker, M., Glickman, A., Zhang, C., Boyle, C., Smith, M., Phillips, J.P.: Fair allocation of scarce medical resources in the time of Covid-19 (2020)

    Google Scholar 

  31. Fanelli, D., Piazza, F.: Analysis and forecast of Covid-19 spreading in China, Italy and France. Chaos, Solitons Fractals 134 (2020)

    Google Scholar 

  32. Faraway, J., Chatfield, C.: Time series forecasting with neural networks: a comparative study using the air line data. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 47(2), 231–250 (1998)

    Google Scholar 

  33. Farmer, J.D.: Chaotic attractors of an infinite-dimensional dynamical system. Phys. D 4(3), 366–393 (1982)

    MathSciNet  Google Scholar 

  34. Farmer, J.D., Sidorowich, J.J.: Predicting chaotic time series. Phys. Rev. Lett. 59(8), 845 (1987)

    MathSciNet  Google Scholar 

  35. Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia, S., Boonyasiri, A., Cucunuba Perez, Z., Cuomo-Dannenburg, G., et al.: Report 9: Impact of non-pharmaceutical interventions (npis) to reduce Covid19 mortality and healthcare demand (2020)

    Google Scholar 

  36. Franses, P.H., Van Dijk, D., et al.: Non-linear Time Series Models in Empirical Finance. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  37. Garcia, C., Sawitzki, G.: Nonlinear tseries: nonlinear time series analysis (2015)

    Google Scholar 

  38. Ghosh, I., Chakraborty, T.: An integrated deterministic-stochastic approach for forecasting the long-term trajectories of Covid-19 (2020). medRxiv preprint https://doi.org/101101/202005

  39. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press Cambridge, Cambridge (2016)

    Google Scholar 

  40. Granger, C.W., Joyeux, R.: An introduction to long-memory time series models and fractional differencing. J. Time Ser. Anal. 1(1), 15–29 (1980)

    MathSciNet  Google Scholar 

  41. Granger, C.W., Ramanathan, R.: Improved methods of combining forecasts. J. Forecast. 3(2), 197–204 (1984)

    Google Scholar 

  42. Grasselli, G., Pesenti, A., Cecconi, M.: Critical care utilization for the Covid-19 outbreak in Lombardy, Italy: early experience and forecast during an emergency response. JAMA 323(16), 1545–1546 (2020)

    Google Scholar 

  43. Groeneveld, R.A., Meeden, G.: Measuring skewness and kurtosis. J. R. Stat. Soc. Ser. D (The Statistician) 33(4), 391–399 (1984)

    Google Scholar 

  44. Guan, W.J., Zy, N.I., Hu, Y., Liang, W.h., Ou, C.Q., He, J.X., Liu, L., Shan, H., Lei, C.L., Hui, D.S., et al.: Clinical characteristics of Coronavirus disease 2019 in China. N. Engl. J. Med. 382(18), 1708–1720 (2020)

    Google Scholar 

  45. Hanke, J.E., Reitsch, A.G., Wichern, D.W.: Business Forecasting, Vol. 9. Prentice Hall New Jersey (2001)

    Google Scholar 

  46. Haslett, J., Raftery, A.E.: Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 38(1), 1–21 (1989)

    Google Scholar 

  47. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer Science & Business Media (2009)

    Google Scholar 

  48. He, S., Peng, Y., Sun, K.: Seir modeling of the Covid-19 and its dynamics. Nonlinear Dyn. 1–14 (2020)

    Google Scholar 

  49. Hegger, R., Kantz, H., Schreiber, T.: Practical implementation of nonlinear time series methods: the Tisean package. Chaos: Interdisc. J. Nonlinear Sci. 9(2), 413–435 (1999)

    Google Scholar 

  50. Hellewell, J., Abbott, S., Gimma, A., Bosse, N.I., Jarvis, C.I., Russell, T.W., Munday, J.D., Kucharski, A.J., Edmunds, W.J., Sun, F., et al.: Feasibility of controlling Covid-19 outbreaks by isolation of cases and contacts. Lancet Global Health (2020)

    Google Scholar 

  51. Holmdahl, I., Buckee, C.: Wrong but useful-what Covid-19 epidemiologic models can and cannot tell us. New Engl. J, Med (2020)

    Google Scholar 

  52. Hou, C., Chen, J., Zhou, Y., Hua, L., Yuan, J., He, S., Guo, Y., Zhang, S., Jia, Q., Zhao, C., et al.: The effectiveness of quarantine of Wuhan city against the corona virus disease 2019 (Covid-19): a well-mixed seir model analysis. J. Med, Virol (2020)

    Google Scholar 

  53. Hu, Z., Ge, Q., Jin, L., Xiong, M.: Artificial intelligence forecasting of Covid-19 in China (2020). arXiv preprint arXiv:200207112

  54. Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., et al.: Clinical features of patients infected with 2019 novel coronavirus in wuhan, china. Lancet 395(10223), 497–506 (2020)

    Google Scholar 

  55. Hyndman, R., Koehler, A.B., Ord, J.K., Snyder, R.D.: Forecasting with Exponential Smoothing: The State Space Approach. Springer Science & Business Media (2008)

    Google Scholar 

  56. Hyndman, R.J., Athanasopoulos, G.: Forecasting: principles and practice. OTexts (2018)

    Google Scholar 

  57. Hyndman, R.J., Billah, B.: Unmasking the theta method. Int. J. Forecast. 19(2), 287–290 (2003)

    Google Scholar 

  58. Hyndman, R.J., Khandakar, Y., et al.: Automatic Time Series for Forecasting: The Forecast Package for R. 6/07, Monash University, Department of Econometrics and Business Statistics (2007)

    Google Scholar 

  59. Hyndman, R.J., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., Petropoulos, F., Razbash, S., Wang, E.: Package ‘forecast’ (2020). Https://cran.r-project.org/web/packages/forecast/forecast

    Google Scholar 

  60. Ioannidis, J.P., Cripps, S., Tanner, M.A.: Forecasting for Covid-19 has failed. Int. J. Forecast. (2020)

    Google Scholar 

  61. James, G., Witten, D., Hastie, T., Tibshirani, R.: An introduction to Statistical Learning, Vol. 112. Springer (2013)

    Google Scholar 

  62. Jammalamadaka, S.R., Qiu, J., Ning, N.: Multivariate bayesian structural time series model. J. Mach. Learn. Res. 19(1), 2744–2776 (2018)

    MathSciNet  Google Scholar 

  63. Kantz, H., Schreiber, T.: Nonlinear time series analysis, vol. 7. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  64. Khashei, M., Bijari, M.: An artificial neural network (p, d, q) model for timeseries forecasting. Expert Syst. Appl. 37(1), 479–489 (2010)

    Google Scholar 

  65. Kim, H.Y.: Statistical notes for clinical researchers: assessing normal distribution (2) using skewness and kurtosis. Restorative Dentist. Endodontics 38(1), 52–54 (2013)

    Google Scholar 

  66. Kissler, S.M., Tedijanto, C., Goldstein, E., Grad, Y.H., Lipsitch, M.: Projecting the transmission dynamics of sars-cov-2 through the postpandemic period. Science 368(6493), 860–868 (2020)

    Google Scholar 

  67. Kourentzes, N.: Nnfor: Time series forecasting with neural networks (2017a)

    Google Scholar 

  68. Kourentzes, N.: nnfor: Time series forecasting with neural networks. r package version 0.9. 6 (2017b)

    Google Scholar 

  69. Kucharski, A.J., Russell, T.W., Diamond, C., Liu, Y., Edmunds, J., Funk, S., Eggo, R.M., Sun, F., Jit, M., Munday, J.D., et al.: Early dynamics of transmission and control of covid-19: a mathematical modelling study. Lancet Infect, Dis (2020)

    Google Scholar 

  70. Lemke, C., Gabrys, B.: Meta-learning for time series forecasting and forecast combination. Neurocomputing 73(10–12), 2006–2016 (2010)

    Google Scholar 

  71. Lemke, C., Budka, M., Gabrys, B.: Metalearning: a survey of trends and technologies. Artif. Intell. Rev. 44(1), 117–130 (2015)

    Google Scholar 

  72. Li, Q., Feng, W., Quan, Y.H.: Trend and forecasting of the Covid-19 outbreak in China. J. Infect. 80(4), 469–496 (2020)

    Google Scholar 

  73. López, L., Rodó, X.: The end of social confinement and covid-19 re-emergence risk. Nat. Hum. Behav. 4(7), 746–755 (2020)

    Google Scholar 

  74. Makridakis, S., Hibon, M.: Arma models and the box-jenkins methodology. J. Forecast. 16(3), 147–163 (1997)

    Google Scholar 

  75. Maleki, M., Mahmoudi, M.R., Wraith, D., Pho, K.H.: Time series modelling to forecast the confirmed and recovered cases of Covid-19. Travel Med. Infect. Dis. 101742 (2020)

    Google Scholar 

  76. Messina, J.P., Brady, O.J., Scott, T.W., Zou, C., Pigott, D.M., Duda, K.A., Bhatt, S., Katzelnick, L., Howes, R.E., Battle, K.E., et al.: Global spread of dengue virus types: mapping the 70 year history. Trends Microbiol. 22(3), 138–146 (2014)

    Google Scholar 

  77. Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., Leisch, F., Chang, C.C., Lin, C.C., Meyer, M.D.: Package ‘e1071’. R J. (2019)

    Google Scholar 

  78. Montero-Manso, P., Athanasopoulos, G., Hyndman, R.J., Talagala, T.S.: Fforma: Feature-based forecast model averaging. Int. J. Forecast. 36(1), 86–92 (2020)

    Google Scholar 

  79. Mood, A.M.: Introduction to the Theory of Statistics. McGraw-Hill (1950)

    Google Scholar 

  80. Mosleh, A., Apostolakis, G.: The assessment of probability distributions from expert opinions with an application to seismic fragility curves. Risk Anal. 6(4), 447–461 (1986)

    Google Scholar 

  81. Mossong, J., Hens, N., Jit, M., Beutels, P., Auranen, K., Mikolajczyk, R., Massari, M., Salmaso, S., Tomba, G.S., Wallinga, J., et al.: Social contacts and mixing patterns relevant to the spread of infectious diseases. PLoS Med. 5(3), (2008)

    Google Scholar 

  82. Nury, A.H., Hasan, K., Alam, M.J.B.: Comparative study of wavelet-arima and wavelet-ann models for temperature time series data in northeastern bangladesh. J. King Saud Univ.-Sci. 29(1), 47–61 (2017)

    Google Scholar 

  83. Paul, R.K., Samanta, S., Paul, M.R.K., LazyData, T.: Package ‘waveletarima’. Seed 500, 1–5 (2017)

    Google Scholar 

  84. Percival, D.B., Walden, A.T.: Wavelet Methods for Time Series Analysis, Vol. 4. Cambridge University Press (2000)

    Google Scholar 

  85. Petersen, E., Koopmans, M., Go, U., Hamer, D.H., Petrosillo, N., Castelli, F., Storgaard, M., Al Khalili, S., Simonsen, L.: Comparing sars-cov-2 with sars-cov and influenza pandemics. Lancet Infect, Dis (2020)

    Google Scholar 

  86. Peterson, B.G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., et al.: Package ‘performanceanalytics’. R Team Cooperation (2018)

    Google Scholar 

  87. Petropoulos, F., Makridakis, S.: Forecasting the novel coronavirus Covid-19. PLoS ONE 15(3) (2020)

    Google Scholar 

  88. Philemon, M.D., Ismail, Z., Dare, J.: A review of epidemic forecasting using artificial neural networks. Int. J. Epidemiol. Res. 6(3), 132–143 (2019)

    Google Scholar 

  89. Phillips, P.C., Perron, P.: Testing for a unit root in time series regression. Biometrika 75(2), 335–346 (1988)

    MathSciNet  Google Scholar 

  90. Pumi, G., Valk, M., Bisognin, C., Bayer, F.M., Prass, T.S.: Beta autoregressive fractionally integrated moving average models. J. Stat. Plann. Inference 200, 196–212 (2019)

    MathSciNet  Google Scholar 

  91. Rajgor, D.D., Lee, M.H., Archuleta, S., Bagdasarian, N., Quek, S.C.: The many estimates of the covid-19 case fatality rate. Lancet. Infect. Dis 20(7), 776–777 (2020)

    Google Scholar 

  92. Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., et al.: Predictions, role of interventions and effects of a historic national lockdown in india’s response to the covid-19 pandemic: data science call to arms. Harvard Data Sci. Rev. 2020(Suppl 1), (2020)

    Google Scholar 

  93. Ribeiro, M.H.D.M., da Silva, R.G., Mariani, V.C., dos Santos Coelho, L.: Short-term forecasting covid-19 cumulative confirmed cases: perspectives for brazil. Chaos, Solitons Fractals, 109853 (2020)

    Google Scholar 

  94. Robinson, P.M.: Log-periodogram regression of time series with long range dependence. Ann. Stat. 1048–1072 (1995)

    Google Scholar 

  95. Roosa, K., Lee, Y., Luo, R., Kirpich, A., Rothenberg, R., Hyman, J., Yan, P., Chowell, G.: Real-time forecasts of the covid-19 epidemic in China from february 5th to february 24th, 2020. Infect. Dis. Modell. 5, 256–263 (2020)

    Google Scholar 

  96. Rosenbaum, L.: Facing Covid-19 in Italy-ethics, logistics, and therapeutics on the epidemic’s front line. N. Engl. J. Med. 382(20), 1873–1875 (2020)

    Google Scholar 

  97. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest lyapunov exponents from small data sets. Phys. D 65(1–2), 117–134 (1993)

    MathSciNet  Google Scholar 

  98. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning internal representations by error propagation. California Univ San Diego La Jolla Inst for Cognitive Science, Tech. rep (1985)

    Google Scholar 

  99. Scott, S.L., Varian, H.R.: Bayesian variable selection for nowcasting economic time series. Tech. rep, National Bureau of Economic Research (2013)

    Google Scholar 

  100. Scott, S.L., Varian, H.R.: Predicting the present with bayesian structural time series. Int. J. Math. Modell. Numer. Optim. 5(1–2), 4–23 (2014)

    Google Scholar 

  101. Scott, S.L., Scott, M.S.L., Scott, M.S., BoomSpikeSlab, D., Boom, L.: Package ‘bsts’ (2020)

    Google Scholar 

  102. Shaub, D.: Fast and accurate yearly time series forecasting with forecast combinations. Int. J. Forecast. 36(1), 116–120 (2020)

    Google Scholar 

  103. Shaub, D., Ellis, P.: forecasthybrid: Convenient functions for ensemble time series forecasts. R package: https://CRANR-projectorg/package=forecastHybrid 4(17), 238 (2019)

    Google Scholar 

  104. Shin, Y., Schmidt, P.: The kpss stationarity test as a unit root test. Econ. Lett. 38(4), 387–392 (1992)

    Google Scholar 

  105. Smith, J., Wallis, K.F.: A simple explanation of the forecast combination puzzle. Oxford Bull. Econ. Stat. 71(3), 331–355 (2009)

    Google Scholar 

  106. Spiliotis, E., Assimakopoulos, V., Makridakis, S.: Generalizing the theta method for automatic forecasting. Eur. J. Oper. Res. 284(2), 550–558 (2020)

    MathSciNet  Google Scholar 

  107. Sujath, R., Chatterjee, J.M., Hassanien, A.E.: A machine learning forecasting model for covid-19 pandemic in India. Stochastic Environmental Research and Risk Assessment p. 1 (2020)

    Google Scholar 

  108. Teräsvirta, T., Lin, C.F., Granger, C.W.: Power of the neural network linearity test. J. Time Ser. Anal. 14(2), 209–220 (1993)

    Google Scholar 

  109. Teräsvirta, T., Van Dijk, D., Medeiros, M.C.: Linear models, smooth transition autoregressions, and neural networks for forecasting macroeconomic time series: a re-examination. Int. J. Forecast. 21(4), 755–774 (2005)

    Google Scholar 

  110. Timmermann, A.: Forecast combinations. handbook of economic forecasting (2006)

    Google Scholar 

  111. Tong, H.: Non-linear Time Series: A Dynamical System Approach. Oxford University Press (1990)

    Google Scholar 

  112. Tong, H.: Nonlinear time series analysis since 1990: Some personal reflections. Acta Math. Appl. Sin. 18(2), 177 (2002)

    MathSciNet  Google Scholar 

  113. Trapletti, A., Hornik, K., LeBaron, B.: tseries: Time series analysis and computational finance. R package version 010–11 (2007)

    Google Scholar 

  114. Trilla, A., Trilla, G., Daer, C.: The 1918 “spanish flu” in spain. Clin. Infect. Dis. 47(5), 668–673 (2008)

    Google Scholar 

  115. Tsay, R.S.: Nonlinearity tests for time series. Biometrika 73(2), 461–466 (1986)

    MathSciNet  Google Scholar 

  116. Tsay, R.S.: Time series and forecasting: Brief history and future research. J. Am. Stat. Assoc. 95(450), 638–643 (2000)

    Google Scholar 

  117. Wang, W.S.: Multiple time scales analysis of hydrological time series with wavelet transform. J. Sichuan Univ. Eng. Sci. Edn. 34(6), 14–17 (2002)

    Google Scholar 

  118. Wang, X., Smith-Miles, K., Hyndman, R.: Rule induction for forecasting method selection: meta-learning the characteristics of univariate time series. Neurocomputing 72(10–12), 2581–2594 (2009)

    Google Scholar 

  119. Weinberger, D.M., Cohen, T., Crawford, F.W., Mostashari, F., Olson, D., Pitzer, V.E., Reich, N.G., Russi, M., Simonsen, L., Watkins, A., et al.: Estimating the early death toll of covid-19 in the United States. bioRxiv (2020)

    Google Scholar 

  120. Winters, P.R.: Forecasting sales by exponentially weighted moving averages. Manage. Sci. 6(3), 324–342 (1960)

    MathSciNet  Google Scholar 

  121. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Google Scholar 

  122. Wu, J.T., Leung, K., Leung, G.M.: Nowcasting and forecasting the potential domestic and international spread of the 2019-ncov outbreak originating in wuhan, china: a modelling study. Lancet 395(10225), 689–697 (2020)

    Google Scholar 

  123. Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14(1), 35–62 (1998)

    Google Scholar 

  124. Zhang, G.P.: Time series forecasting using a hybrid arima and neural network model. Neurocomputing 50, 159–175 (2003)

    Google Scholar 

  125. Zhang, G.P., Qi, M.: Neural network forecasting for seasonal and trend time series. Eur. J. Oper. Res. 160(2), 501–514 (2005)

    Google Scholar 

  126. Zhuang, Z., Cao, P., Zhao, S., Lou, Y., Wang, W., Yang, S., Yang, L., He, D.: Estimation of local novel coronavirus (covid-19) cases in wuhan, china from off-site reported cases and population flow data from different sources. medRxiv (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, T., Ghosh, I., Mahajan, T., Arora, T. (2022). Nowcasting of COVID-19 Confirmed Cases: Foundations, Trends, and Challenges. In: Azar, A.T., Hassanien, A.E. (eds) Modeling, Control and Drug Development for COVID-19 Outbreak Prevention. Studies in Systems, Decision and Control, vol 366. Springer, Cham. https://doi.org/10.1007/978-3-030-72834-2_29

Download citation

Publish with us

Policies and ethics