Abstract
In a fundus image, Vessel local characteristics like direction, illumination and noise vary considerably, making vessel segmentation a challenging task. Methods based upon deep convolutional networks have consistently yield state of the art performance. Despite effective, of the drawbacks of these methods is their computational complexity, whereby testing and training of these networks require substantial computational resources and can be time consuming. Here we present a multi-scale kernel based on fully convolutional layers that is quite lightweight and can effectively segment large, medium, and thin vessels over a wide variations of contrast, position and size of the optic disk. Moreover, the architecture presented here makes use of these multi-scale kernels, reduced application of pooling operations and skip connections to achieve faster training. We illustrate the utility of our method for retinal vessel segmentation on the DRIVE, CHASE_DB and STARE data sets. We also compare the results delivered by our method with a number of alternatives elsewhere in the literature. In our experiments, our method always provides a margin of improvement on specificity, accuracy, AUC and sensitivity with respect to the alternative.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The dataset can found at https://blogs.kingston.ac.uk/retinal/chasedb1/.
- 2.
The dataset is widely available at https://drive.grand-challenge.org/.
- 3.
More information regarding the STARE project can be found at https://cecas.clemson.edu/~ahoover/stare/.
References
Khan, T.M., Alhussein, M., Aurangzeb, K., Arsalan, M., Naqvi, S.S., Nawaz, S.J.: Residual connection-based encoder decoder network (RCED-net) for retinal vessel segmentation. IEEE Access 8, 131257–131272 (2020)
Khan, T.M., Naqvi, S.S., Arsalan, M., Khan, M.A., Khan, H.A., Haider, A.: Exploiting residual edge information in deep fully convolutional neural networks for retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)
Khan, T.M., Abdullah, F., Naqvi, S.S., Arsalan, M., Khan, M.A., Shallow vessel segmentation network for automatic retinal vessel segmentation. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)
Khan, T.M., Robles-Kelly, A., Naqvi, S.S.: A semantically flexible feature fusion network for retinal vessel segmentation. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. CCIS, vol. 1332, pp. 159–167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63820-7_18
Khawaja, A., Khan, T.M., Naveed, K., Naqvi, S.S., Rehman, N.U., Nawaz, S.J.: An improved retinal vessel segmentation framework using Frangi filter coupled with the probabilistic patch based denoiser. IEEE Access 7, 164344–164361 (2019)
Khan, M.A.U., Khan, T.M., Bailey, D.G., Soomro, T.A.: A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity. Pattern Anal. Appl. 22(3), 1177–1196 (2018). https://doi.org/10.1007/s10044-018-0696-1
Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017)
Yan, Z., Yang, X., Cheng, K.T.: Joint segment-level and pixel-wise losses for deep learning based retinal vessel segmentation. IEEE Trans. Biomed. Eng. 65, 1912–1923 (2018)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Medical Image Computing and Computer-Assisted Intervention (2015)
Gu, Z., et al.: CE-net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging 38(10), 2281–2292 (2019)
Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)
Fraz, M.M., et al.: An approach to localize the retinal blood vessels using bit planes and centerline detection. Comput. Methods Programs Biomed. 108(2), 600–616 (2012c)
Staal, J., Abramoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)
Hoover, A.D., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)
Guo, S., Wang, K., Kang, H., Zhang, Y., Gao, Y., Li, T.: BTS-DSN: deeply supervised neural network with short connections for retinal vessel segmentation. Int. J. Med. Inf. 126, 105–113 (2019)
Ma, W., Yu, S., Ma, K., Wang, J., Ding, X., Zheng, Y.: Multi-task neural networks with spatial activation for retinal vessel segmentation and artery/vein classification. In: Medical Image Computing and Computer Assisted Intervention (2019)
Wang, B., Qiu, S., He, H.: Dual encoding U-net for retinal vessel segmentation. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 84–92. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_10
Wu, Y., et al.: Vessel-Net: retinal vessel segmentation under multi-path supervision. In: Medical Image Computing and Computer Assisted Intervention (2019)
Arsalan, M., Oqais, M., Mahmood, T., Cho, S.W., Park, K.R.: Aiding the diagnosis of diabetic and hypertensive retinopathy using artificial intelligence-based semantic segmentation. J. Clin. Med. 8(9), 1446 (2019)
Wang, D., Haytham, A., Pottenburgh, J., Saeedi, O., Tao, Y.: Hard attention net for automatic retinal vessel segmentation. IEEE J. Biomed. Health Inf. 24, 3384–3396 (2020)
Yin, P., Yuan, R., Cheng, Y., Wu, Q.: Deep guidance network for biomedical image segmentation. IEEE Access 8, 116106–116116 (2020)
Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J.P.W., Duits, R., Romeny, B.M.: Robust retinal vessel segmentation via locally adaptive derivative frames in orientation scores. IEEE Trans. Med. Imaging 35(12), 2631–2644 (2016)
Khawaja, A., Khan, T.M., Khan, M.A.U., Nawaz, S.J.: A multi-scale directional line detector for retinal vessel segmentation. Sensors 19(22), 4949 (2019)
Jin, Q., Meng, Z., Pham, T.D., Chen, Q., Wei, L., Su, R.: DUNet: a deformable network for retinal vessel segmentation. Knowl. Based Syst. 178, 149–162 (2019)
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with Atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Khan, T.M., Robles-Kelly, A., Naqvi, S.S., Arsalan, M. (2021). Residual Multiscale Full Convolutional Network (RM-FCN) for High Resolution Semantic Segmentation of Retinal Vasculature. In: Torsello, A., Rossi, L., Pelillo, M., Biggio, B., Robles-Kelly, A. (eds) Structural, Syntactic, and Statistical Pattern Recognition. S+SSPR 2021. Lecture Notes in Computer Science(), vol 12644. Springer, Cham. https://doi.org/10.1007/978-3-030-73973-7_31
Download citation
DOI: https://doi.org/10.1007/978-3-030-73973-7_31
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73972-0
Online ISBN: 978-3-030-73973-7
eBook Packages: Computer ScienceComputer Science (R0)