Abstract
This proposal provides a user-friendly way of personalizing fuzzy search criteria in an expressive searching platform. The interest is in, for example, if we have a fuzzy criterion “expensive” for searching expensive restaurants defined in the system, by personalization, any user can access the criterion and personalize it with his/her preferences and values that satisfies his/her needs. In this way, every user retrieves different results while querying over a single fuzzy search criterion. The system executes this personalized fuzzy searching criterion if the logged-in user has previously personalized that criterion definition. Moreover, our framework is user-friendly enough to perform expressive searches over modern and conventional database formats without knowing the low-level syntax of the criteria of the framework. Furthermore, we present the architecture of this novel framework, with its design and implementation details. We provide a clarifying case study on our system by providing an experiment. We have analyzed the results obtained from the experiment to show our system’s behavior and performance after incorporating the functionality of the personalization of fuzzy search criteria.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bosc, P., Pivert, O.: SQLf: a relational database language for fuzzy querying. IEEE Trans. Fuzzy Syst. 3(1), 1–17 (1995). https://doi.org/10.1109/91.366566
Dubois, D., Prade, H.: Using fuzzy sets in flexible querying: why and how? In: Troels, A., Henning, C., Legind, L.H. (eds.) Flexible Query Answering Systems, pp. 45–60 (1997). https://dl.acm.org/citation.cfm
Tahani, V.: A conceptual framework for fuzzy query processing: a step toward very intelligent database systems. Inf. Process Manag. 13, 289–303 (1977)
Rodriguex, L.J.T.: (Ph.D. Tesis) a contribution to database flexible querying: Fuzzy quantified queries evaluation, Novemver 2005
Prade, H., Testemale, C.: Generalizing database relational algebra for the treatment of incomplete/uncertain information and vague queries. Inf. Sci. 34, 113–143 (1984)
Umano, M., Hatono, I., Tamura, H.: Fuzzy databaase systems. In: Proceedings of the IEEE International Joint Conference on Fuzzy Systems, vol. 5, pp. 35–36 (1995)
Moreno, J.M., Aciego, M.O.: On first-order multiadjoint logic programming (2002)
Konstantinou, N., Spanos, M.C., Solidakis, E., Mitrou, N.: VisAVis: an approach to an intermediate layer between ontologies and relational database contents. In: Proceedings of the 2006 CAISE Third International Workshop on Web Information system Modeling (WISM) (2006)
Martínez-Cruz, C., Noguera, J.M., Vila, M.A.: Flexible queries on relational databases using fuzzy logic and ontologies. Inf. Sci. 366, 150–164 (2016)
Takahashi, Y.: A fuzzy query language for relational databases. IEEE Trans. Syst. Man. Cyb. 21, 1576–1579 (1991)
Vojtas, P.: Fuzzy logic programming. Fuzzy Set. Syst. 124(3), 361–370 (2001)
Ishizuka, M., Kanai, N.: Prolog-ELF incorporating fuzzy logic. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence, pp. 701–703. Morgan Kaufmann Publishers Inc., San Francisco (1985)
Li, D., Liu, D.: A Fuzzy Prolog Database System. Wiley, New York (1990)
Baldwin, J.F., Martin, T.P., Pilsworth, B.W.: Fril- Fuzzy and Evidential Reasoning in Artificial Intelligence. Wiley, New York (1995)
Morcillo, P., Moreno, G.: Floper, a fuzzy logic programming environment for research. In: Gij (ed.) Proceedings of VIII Jornadas sobre Programacion y Lenguajes (PROLE 2008), vol. 10, pp. 259–263 (2008)
Bobillo, F., Straccia, U.: fuzzyDL: an expressive fuzzy description logic reasoner. In: International Conference on Fuzzy Systems (FUZZ08), , pp. 923–930. IEEE Computer Society (2008)
Guadarrama, S., Muñoz, S., Vaucheret, C.: Fuzzy prolog: a new approach using soft constraints propagation. Fuzzy Sets Syst. 144(1), 127–150 (2004). https://doi.org/10.1016/j.fss.2003.10.017
Vaucheret, C., Guadarrama, S., Muñoz-Hernández, S.: Fuzzy prolog: a simple general implementation using CLP(R). In: Baaz, M., Voronkov, A. (eds.) (LPAR). Lecture Notes in Artificial Intelligence, vol. 2514, pp. 450–464. Springer (2002)
Muñoz Hernández, S., Pablos-Ceruelo, V., Strass, H.: RFuzzy: syntax, Semantics and Implementation Details of a Simple and Expressive Fuzzy Tool over Prolog. Inf. Sci. 181(10), 1951–1970 (2011). https://doi.org/10.1016/j.ins.2010.07.033
Zadeh, L.A.: Fuzzy sets. Inf. and Control 8(3), 338–353 (1965)
Pablos-Ceruelo, V., Muñoz-Hernández, S.: Introducing priorities in rfuzzy: Syntax and semantics. In: CMMSE 2011: Proceedings of the 11th International Conference on Mathematical Methods in Science and Engineering, vol. 3, Benidorm (Alicante), Spain, June 2011, pp. 918–929 (2011)
Pablos-Ceruelo, V., Muñoz Hernández, S.: Getting answers to fuzzy and flexible searches by easy modelling of real-world knowledge. In: Proceedings of 5th International Joint Conference on Computational Intelligence, pp. 265–275 (2013). https://doi.org/10.5220/0004555302650272.
The CLIP lab: The Ciao Prolog Development System. https://www.clip.dia.fi.upm.es/Software/Ciao
Medina, J., Ojeda-Aciego, M., Vojtas, P.: A multi-adjoint approach to similarity-based unification. Electr. Notes Theor. Comput. Sci. 66, 70–85 (2002)
Medina, J., Ojeda-Aciego, M., Vojtas, P.: A completeness theorem for multi-adjoint logic programming. In: FUZZ-IEEE, pp. 1031–1034 (2001)
Medina, J., Ojeda-Aciego, M., Vojtas, P.: Multi-adjoint logic programming with continuous semantics. In: Proceedings of the 6th International Conference on Logic Programming and Nonmonotonic Reasoning, series LPNMR 2001, pp. 351–364. Springer, London (2001)
Medina, J., Ojeda-Aciego, M., Vojtas, P.: A procedural semantics for multi-adjoint logic programming. In: Proceedings of Progress in Artificial Intelligence, pp. 290–297 (2001)
Medina, J., Ojeda-Aciego, M., Vojtas, P.: Similarity-based unification: a multi-adjoint approach. Fuzzy Set. Syst. 146(1), 43–62 (2004)
Pablos-Ceruelo, V., Muñoz-Hernández, S.: FleSe: a tool for posing flexible and expressive (fuzzy) queries to a regular database. In: Proceedings of 11th International Conference on Distributed Computing and Artificial Intelligence, pp. 157–164 (2014)
Deedar, M.H., Muñoz-Hernández, S.: Allowing users to create similarity relations for their flexible searches over databases. In: Artificial Intelligence and Soft Computing, pp. 526–541. Springer, Cham (2019)
Deedar, M.H., Muñoz-Hernández, S.: User-friendly interface for introducing fuzzy criteria into expressive searches. In: Intelligent Systems and Applications, pp. 982–997. Springer, Cham (2020)
Deedar, M.H., Muñoz-Hernández, S.: Extending a flexible searching tool for multiple database formats. In: Emerging Trends in Electrical, Communications, and Information Technologies, pp. 25–35. Springer (2020)
Deedar, M.H., Muñoz-Hernández, S.: UFleSe: user-friendly parametric framework for expressive flexible searches. Can. J. Electr. Comput. Eng. 43(4), 235–250 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Deedar, M.H., Muñoz-Hernández, S. (2021). Personalizing Fuzzy Search Criteria for Improving User-Based Flexible Search. In: Ahram, T., Taiar, R., Groff, F. (eds) Human Interaction, Emerging Technologies and Future Applications IV. IHIET-AI 2021. Advances in Intelligent Systems and Computing, vol 1378. Springer, Cham. https://doi.org/10.1007/978-3-030-74009-2_24
Download citation
DOI: https://doi.org/10.1007/978-3-030-74009-2_24
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-73270-7
Online ISBN: 978-3-030-74009-2
eBook Packages: Intelligent Technologies and RoboticsIntelligent Technologies and Robotics (R0)