Abstract
Evolutionary algorithms (EAs) and deterministic chaos, which is a complex behavior produced by complex as well as simple dynamical systems, are tightly joined to create an interdisciplinary fusion of two interesting areas. This chapter discusses the use of EAs for numerical identification of the existence of the so-called hidden attractors (a full report is in [1]), which are part of the chaotic dynamics, as well as their synthesis [2, 3].
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
I. Zelinka, Evolutionary identification of hidden chaotic attractors. Eng. Appl. Artif. Intell. 50, 159–167 (2016)
I. Zelinka, D. Davendra, R. Jasek, R. Senkerik, Z. Oplatkova, Analytical Programming – A Novel Approach for Evolutionary Synthesis of Symbolic Structures (INTECH Open Access Publisher, 2011)
J.R. Koza, Human-competitive results produced by genetic programming. Genet. Program. Evolvable Mach. 11(3–4), 251–284 (2010)
N.V. Kuznetsov, G.A. Leonov, V.I. Vagaitsev, Analytical-numerical method for attractor localization of generalized Chua’s system. Periodic Control Syst. 4(11), 29–33 (2010)
T. Kapitaniak, G.A. Leonov, Multistability: uncovering hidden attractors. Eur. Phys. J. Spec. Top. 224(8), 1405–1408 (2015)
H. Jiang, Y. Liu, Z. Wei, L. Zhang, Hidden chaotic attractors in a class of two-dimensional maps. Nonlinear Dyn. 1–9 (2016)
D. Dudkowski, S. Jafari, T. Kapitaniak, N.V. Kuznetsov, G.A. Leonov, A. Prasad, Hidden attractors in dynamical systems. Physics Reports (2016)
R.C. Hilborn, S. Coppersmith, A.J. Mallinckrodt, S. Mckay, Chaos and nonlinear dynamics: an introduction for scientists and engineers. Am. J. Phys. 62(9), 235 (1994)
H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, 2004)
E. Schöll, H.G. Schuster, Handbook of Chaos Control (Wiley, 2008)
G.A. Leonov, N.V. Kuznetsov, M.A. Kiseleva, E.P. Solovyeva, A.M. Zaretskiy, Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dyn. 77(1–2), 277–288 (2014)
F.R. Tahir, S. Jafari, V. Pham, C. Volos, X. Wang, A novel no-equilibrium chaotic system with multiwing butterfly attractors. Int. J. Bifurc. Chaos 25(04) (2015)
P.R. Sharma, M.D. Shrimali, A. Prasad, N.V. Kuznetsov, G.A. Leonov, Controlling dynamics of hidden attractors. Int. J. Bifurc. Chaos 25(4) (2015)
G.A. Leonov, Iwcfta2012 keynote speech i – hidden attractors in dynamical systems: from hidden oscillation in hilbert-kolmogorov, aizerman and kalman problems to hidden chaotic attractor in chua circuits. Int. J. Bifurc. Chaos 23(1), xv–xvii (2012)
M. Molaie, S. Jafari, J.C. Sprott, Simple chaotic flows with one stable equilibrium. Int. J. Bifurc. Chaos 23(11), 151–167 (2013)
J.C. Sprott, S. Jafari, V.T. Pham, Z.S. Hosseini, A chaotic system with a single unstable node. Phys. Lett. A 379(36), 2030–2036 (2015)
E. Ott, C. Grebogi, J.A. York, Controlling chaos. Phys. Rev. Lett. 64(1), 2837 (1990)
I. Zelinka, R. Senkerik, E. Navratil, Investigation on evolutionary optimization of chaos control. Chaos, Solitons Fractals 40(1), 111–129 (2009)
R. Senkerik, I. Zelinka, E. Navratil, Optimization of feedback control of chaos by evolutionary algorithms. IFAC Proc. 39(8), 77–82 (2006)
I. Zelinka, R. Senkerik, E. Navratil, Investigation on realtime deterministic chaos control by means of evolutionary algorithms. IFAC Proc. 39(8), 190–196 (2006)
K. Pyragas, Control of chaos via extended delay feedback. Phys. Lett. A 206(5), 323–330 (1995)
H. Richter, K.J. Reinschke, Optimization of local control of chaos by an evolutionary algorithm. Physica D: Nonlinear Phenomena 144(3), 309–334 (2000)
H. Richter, An evolutionary algorithm for controlling chaos: the use of multi-objective fitness functions, in International Conference on Parallel Problem Solving from Nature (Springer, 2002), pp. 308–317
Z. Oplatkova, R. Senkerik, I. Zelinka, J. Holoska, Synthesis of control law for chaotic henon system preliminary study, in ECMS (2010), pp. 277–282
Z. Oplatková, R. Šenkeřík, S. Bělašková, I. Zelinka, Synthesis of control rule for synthesized chaotic system by means of evolutionary techniques, MENDEL 2010 (2010)
Z. Oplatková, R. Senkerik, I. Zelinka, J. Holoska, Synthesis of control law for chaotic logistic equation-preliminary study, in 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation, IEEE (2010), pp. 65–70
W. Just, Principles of time delayed feedback control, Handbook of Chaos Control (Wiley, 1999), pp. 21–41
K. Pyragas, Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)
G. Hu, F. Xie, J. Xiao, J. Yang, Z. Qu, Control of patterns and spatiotemporal chaos and its applications, Handbook of Chaos Control (Wiley-VCH, 1999), pp. 43–86
I. Zelinka, G. Chen, S. Celikovsky, Chaos synthesis by means of evolutionary algorithms. Int. J. Bifurc. Chaos 18(04), 911–942 (2008)
I. Zelinka, S. Celikovskỳ, H. Richter, G. Chen, Evolutionary Algorithms and Chaotic Systems, vol. 267 (Springer, 2010)
A.H. Wright, A. Agapie, Cyclic and chaotic behavior in genetic algorithms, in Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Computation (2001), pp. 718–724
K.J. Persohn, R.J. Povinelli, K.J. Persohn, R.J. Povinelli, Analyzing logistic map pseudorandom number generators for periodicity induced by finite precision floating-point representation. Chaos, Solitons Fractals 45(3), 238–245 (2012)
M. Drutarovsky, P. Galajda, A robust chaos-based true random number generator embedded in reconfigurable switched-capacitor hardware, in 2007 17th International Conference on Radioelektronika, IEEE (2007), pp. 1–6
X.-Y. Wang, X. Qin, A new pseudo-random number generator based on cml and chaotic iteration. Nonlinear Dyn. 70(2), 1589–1592 (2012)
N.K. Pareek, V. Patidar, K.K. Sud, A random bit generator using chaotic maps. Int. J. Netw. Secur. 10(1), 32–38 (2010)
E. Araujo, L.D.S. Coelho, Particle swarm approaches using lozi map chaotic sequences to fuzzy modelling of an experimental thermal-vacuum system. Appl. Soft Comput. 8(4), 1354–1364 (2008)
B. Alatas, E. Akin, A.B. Ozer, Chaos embedded particle swarm optimization algorithms. Chaos, Solitons Fractals 40(4), 1715–1734 (2009)
M. Pluhacek, R. Senkerik, D. Davendra, Z.K. Oplatkova, I. Zelinka, On the behavior and performance of chaos driven pso algorithm with inertia weight. Comput. Math. Appl. 66(2), 122–134 (2013)
M. Pluhacek, R. Senkerik, I. Zelinka, “Impact of Various Chaotic Maps on the Performance of Chaos Enhanced PSO Algorithm with Inertia Weight-an Initial Study, in Nostradamus: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems (Springer, 2013), pp. 153–166
N. Kuznetsov, O. Kuznetsova, G. Leonov, V. Vagaitsev, Analytical-Numerical Localization of Hidden Attractor in Electrical Chua’s Circuit (Springer, Berlin-Heidelberg, 2013)
V.O. Bragin, V.I. Vagaitsev, N.V. Kuznetsov, G.A. Leonov, Algorithms for finding hidden oscillations in nonlinear systems: the aizerman and kalman problems and chua’s circuits. Int. J. Comput. Syst. Sci. 50(4), 511–543 (2011)
I. Zelinka, L. Nolle, Plasma reactor optimizing using differential evolution, Differential Evolution: A Practical Approach to Global Optimization (2005), pp. 499–512
L. Nolle, I. Zelinka, A.A. Hopgood, A. Goodyear, Comparison of an self-organizing migration algorithm with simulated annealing and differential evolution for automated waveform tuning. Adv. Eng. Softw. 36(10), 645–653 (2005)
E.L. Houghton, P.W. Carpenter, Aerodynamics for Engineering Students (Butterworth-Heinemann, 2003)
C.L. Karr, R. Bowersox, V. Singh, Minimization of sonic boom on supersonic aircraft using an evolutionary algorithm, in Genetic and Evolutionary Computation Conference (Springer, 2003), pp. 2157–2167
M. Dorigo, M. Birattari, T. Stutzle, Ant colony optimization. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
Q.T. Pham, Dynamic optimization of chemical engineering processes by an evolutionary method. Comput. Chem. Eng. 22(7), 1089–1097 (1998)
Q. Pham, S. Coulter, Modelling the chilling of pig carcasses using an evolutionary method,” in Proceedings of the International Congress of Refrigeration, vol. 3 (1995), pp. 676–683
Y. Li, A. Häu\(\beta \)ler, Artificial evolution of neural networks and its application to feedback control. Artif. Intell. Eng. 10(2), 143–152 (1996)
O. Levenspiel, Chemical Reaction Engineering: An Introduction to the Design of Chemical Reactors (Wiley, 1962)
M. Judy, K. Ravichandran, K. Murugesan, A multi-objective evolutionary algorithm for protein structure prediction with immune operators. Comput. Methods Biomech. Biomed. Eng. 12(4), 407–413 (2009)
O. Ebenhöh, R. Heinrich, Evolutionary optimization of metabolic pathways. theoretical reconstruction of the stoichiometry of atp and nadh producing systems. Bull. Math. Biol. 63(1), 21–55 (2001)
G.B. Fogel, D.W. Corne, Evolutionary Computation in Bioinformatics (Morgan Kaufmann, 2002)
J.H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control and artificial intelligence. Control Artif. Intell. Univ. Mich. Press 6(2), 126–137 (1975)
M. Dorigo, M. Birattari, C. Blum, Ant Colony Optimization and Swarm Intelligence, vol. 5217(8) (Springer, 2004), pp. 767–771
V. Kenneth, Price: An Introduction to Differential Evolution, New Ideas in Optimization (McGraw-Hill, London, 1999)
I. Zelinka, Soma—self-organizing migrating algorithm, in New Optimization Techniques in Engineering (Springer, 2004), pp. 167–217
J.H. Holland, Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence (University of Michigan Press, 1975)
B.S. Kirkpatrick, C. Gelatt, D. Vecchi, Optimization by simulated annealing. Science 220(4598), 671–80 (1983)
V. Černý, Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45(1), 41–51 (1985)
R. Rajendra, D.K. Pratihar, Particle swarm optimization, in International Conference on Biomedical Engineering & Informatics (1942), pp. 129–132
H.P. Schwefel, Numerische optimierung von computer – modellen (2010)
B.I. Rechenberg, Evolutionstrategie: Optimierung Technischer Systeme nach Prinzipien dier Biolischen Evolution (Frommann-Holzboog, 2013)
N.V. Kuznetsov, G.A. Leonov, Hidden attractors in dynamical systems: systems with no equilibria, multistability and coexisting attractors. IFAC Proc. Vol. 47(3), 5445–5454 (2014)
M.A. Van Wyk, W.-H. Steeb, Chaos in Electronics, vol. 2 (Springer Science & Business Media, 2013)
J.R. Koza, Genetic Programming: A Paradigm for Genetically Breeding Populations of Computer Programs to Solve Problems (Stanford University, 1990)
C. Ryan, J. Collins, M.O. Neill, Grammatical evolution: Evolving programs for an arbitrary language, in European Conference on Genetic Programming (Springer, 1998), pp. 83–96
C.G. Johnson, Artificial immune system programming for symbolic regression, in European Conference on Genetic Programming (Springer, 2003), pp. 345–353
M. O’Neill, A. Brabazon, Grammatical Differential Evolution, in Proceedings of International Conference on Artificial Intelligence (2006)
J. Lampinen, I. Zelinka, On stagnation of the differential evolution algorithm, in Proceedings of MENDEL (2000), pp. 76–83
I. Zelinka, M. Chadli, D. Davendra, R. Senkerik, M. Pluhacek, J. Lampinen, Do evolutionary algorithms indeed require random numbers? extended study, in Nostradamus 2013: Prediction, Modeling and Analysis of Complex Systems (Springer, 2013), pp. 61–75
K. Aihara, T. Takabe, M. Toyoda, Chaotic neural networks. Phys. Lett. A 144(6–7), 333–340 (1990)
I. Tsuda, Dynamic link of memory—chaotic memory map in nonequilibrium neural networks. Neural Netw. 5(2), 313–326 (1992)
M.T. Thai, P.M. Pardalos, Handbook of Optimization in Complex Networks (Springer, 2012)
I. Zelinka, D. Davendra, S. Roman, J. Roman, Do evolutionary algorithms dynamics create complex network structures? Complex Syst. 20(2), 127 (2011)
I. Zelinka, A survey on evolutionary algorithms dynamics and its complexity-mutual relations, past, present and future. Swarm Evol. Comput. 25, 2–14 (2015)
Acknowledgements
The following grants are acknowledged for the financial support provided to this research: Grant Agency of the Czech Republic–GACR P103/15/06700S and by Grant of SGS No. SP2016/175, VSB–Technical University of Ostrava.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Zelinka, I. (2021). Unconventional Algorithms and Hidden Chaotic Attractors. In: Wang, X., Kuznetsov, N.V., Chen, G. (eds) Chaotic Systems with Multistability and Hidden Attractors. Emergence, Complexity and Computation, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-030-75821-9_18
Download citation
DOI: https://doi.org/10.1007/978-3-030-75821-9_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-75820-2
Online ISBN: 978-3-030-75821-9
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)