Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Computational Intelligence in Web Mining

  • Chapter
  • First Online:
Innovative Trends in Computational Intelligence

Abstract

The increasing demand of web applications and social network websites generates a large volume of data for online accesses. Since web data stored across different web servers and online repositories have grown rapidly, understanding user’s pattern and their content usage trends is essential for service providers. Web mining is an emerging technique in the field of computational intelligence. It is used to discover useful knowledge and insights from web data for a variety of applications such as target marketing, intrusion detection, web monitoring and recommendation, fake news analysis, etc. Web data contains heterogeneous data such as online documents, web structure data, web log, and user profile. Web content mining, web structure mining, and web usage mining are broad categories of web mining based on the type of data used in pattern extraction. This chapter describes basic functionalities of web mining and explores the state-of-the-art web mining techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Srivastava, P. Desikan, V. Kumar, Web Mining: Accomplishments & Future Directions (National Science Foundation Workshop on Next Generation Data Mining, 2002)

    Google Scholar 

  2. R. Cooley, B. Mobasher, J. Srivastava, Web mining: Information and pattern discovery on the world wide web, in Proceedings of the 9th IEEE International Conference on Tools with AI, (1997)

    Google Scholar 

  3. J. Han, J. Pei, Y. Yin, Mining frequent patterns without candidate generation, in Proceedings of the ACM SIGMOD International Conference on the Management of Data 2000, (2000), pp. 1–12

    Google Scholar 

  4. A.M. Kaplan, Social media, the digital revolution, and the business of media. Int. J. Media Manag. 17, 197–199 (2015)

    Article  Google Scholar 

  5. C. Zhang, J. Sun, X. Zhu, Y. Fang, Privacy and security for online social networks: Challenges and opportunities. IEEE Netw. 2010, 13–18 (2010)

    Article  Google Scholar 

  6. V.V.H. Pham, S. Yu, K. Sood, L. Cui, Privacy issues in social networks and analysis: A comprehensive survey. Inst. Eng. Technol. Netw. 7(2), 74–84 (2017)

    Google Scholar 

  7. P. van Schaik et al., Security and privacy in online social networking: Risk perceptions and precautionary behaviour. Comp. Hum. Behav. 78, 283–297 (2017)

    Article  Google Scholar 

  8. A.C. Eberendu, Unstructured data: An overview of the data of big data. Int. J. Comp. Trends Technol. 38(1), 46–50 (2016)

    Article  Google Scholar 

  9. R. Patel, M. Prajapati, M. Barot, Review paper for types of data in big data and text mining. Int. J. Eng. Res. Technol. 08(10) (2019)

    Google Scholar 

  10. P.D. Vo, A. Ginsca, H. Le Borgne, A. Popescu, Harnessing noisy web images for deep representation. Comp. Vision Image Understand. (2017)

    Google Scholar 

  11. Y. Hu, L. Zheng, Y. Yang, Y. Huang, Twitter100k: A real-world dataset for weakly supervised cross-media retrieval. IEEE Trans. Multimedia 20(4), 927–938 (2018)

    Article  Google Scholar 

  12. J. Yang, X. Sun, Y. Lai, L. Zheng, M. Cheng, Recognition from web data: A progressive filtering approach, in IEEE Transactions on Image Processing, vol. 27, (2018), pp. 5303–5315

    Google Scholar 

  13. R. Sardhara, K.I. Lakhataria, Impact of different domain inlink, outlink and rechability on relevance of web page using correlation, in 2019 International Conference on Intelligent Computing and Control Systems (ICCS), (Madurai, India, 2019), pp. 755–759

    Google Scholar 

  14. M. Gandhi, K. Jeyebalan, J. Kallukalam, A. Rapkin, P. Reilly, N. Widodo, Web Research Infrastructure Project Final Report (Cornell University, 2004)

    Google Scholar 

  15. J.C. Bertot, C.R. McClure, W.E. Moen, J. Rubin, Web usage statistics: Measurement issues and analytical techniques. Gov. Inf. Q. 14(4), 373–395 (1997)

    Article  Google Scholar 

  16. Next web page prediction using genetic algorithm and feed forward association rule based on web-log features. Int. J. Performability Eng. 16(1), 10–18 (2020)

    Google Scholar 

  17. R. Sardhara, K.L. Lakhataria, Web structure mining: A novel approach to reduce mutual reinforcement, in 2018 3rd International Conference and Workshops on Recent Advances and Innovations in Engineering (ICRAIE), (Jaipur, India, 2018), pp. 1–6

    Google Scholar 

  18. Y. Wang, H. Liu, Q. Liu, Application research of web log mining in the E-commerce, in 2020 Chinese Control and Decision Conference (CCDC), (Hefei, China, 2020), pp. 349–352

    Google Scholar 

  19. D.K. Singh, V. Sharma, S. Sharma, Graph based approach for mining frequent sequential access patterns of web pages. Int. J. Comp. Appl. 40(10), 33–37 (2012)

    Google Scholar 

  20. J. Srivastava, R. Cooley, M. Deshpande, P.-N. Tan, Web usage mining: Discovery and applications of usage patterns from Web Data. SIGKDD Explor. 1(2) (2000)

    Google Scholar 

  21. R. Cooley, B. Mobasher, J. Srivastava, Data preparation for mining World Wide Web browsing patterns. J. Knowl. Inf. Syst. 1(1) (1999)

    Google Scholar 

  22. W. Lin, S. A. Alvarez, and C . Ruiz, (2000), Collaborative recommendation via adaptive association rule mining. in Proceedings of the Web Mining for Ecommerce Workshop, Boston.

    Google Scholar 

  23. B. Mobasher, H. Dai, T. Luo, M. Nakagawa, Effective personalization based on association rule discovery from web usage data, in Proceedings of the 3rd International Workshop on Web Information and Data Management, (Atlanta, Georgia, USA, 2001), pp. 9–15

    Google Scholar 

  24. C. Wong, S. Shiu, S. Pal, Mining fuzzy association rules for Web access case adaptation, in Proceedings of the Workshop Program at the 4th International Conference on Case-Based Reasoning, (Vancouver, Canada, 2001)

    Google Scholar 

  25. J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan Kaufmann Publishers, 2001)

    MATH  Google Scholar 

  26. M. Tang, Y. Xia, B. Tang, Y. Zhou, B. Cao, R. Hu, Mining collaboration patterns between APIs for mashup creation in web of things. IEEE Access 7, 14206–14215 (2019)

    Article  Google Scholar 

  27. P. Tan, V. Kumar, Modeling of Web robot navigational patterns. in Proceedings of. ACM WebKDD Workshop. (2000)

    Google Scholar 

  28. B. Mobasher, R. Cooley, J. Srivastava, Creating adaptive web sites through usage-based clustering of URLs, in Proceedings of IEEE Knowledge and Data Engineering Workshop (KDEX'99), (1999)

    Google Scholar 

  29. E.-H. Han, G. Karypis, V. Kumar, B. Mobasher, Hypergraph based clustering in highdimensional data sets: A summary of results, in IEEE bulletin of the technical committee on data engineering, vol. 21, (1998)

    Google Scholar 

  30. O. Nasroui, H. Frigui, A. Joshi, R. Krishnapuram, Mining Web access logs using relational competitive fuzzy clustering, in Proceedings of the 8th International Fuzzy Systems Association World Congress, (1999)

    Google Scholar 

  31. A. Banerjee, J. Ghosh, Concept-Based clustering of clickstream data, in Proceedings of the 3rd International Conference on Information Technology, (2000)

    Google Scholar 

  32. R. Agrawal, R. Srikant, Mining sequential patterns, in Proceedings of the 11th International Conference on Data Engineering, (Taipei, Taiwan, 1995), pp. 3–14

    Google Scholar 

  33. J. Pei, J. Han, B. Mortazavi-asl, H. Zhu, Mining access patterns efficiently from web logs, in Proceedings of the 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining, (Kyoto, Japan, 2000), pp. 396–407

    Google Scholar 

  34. E. Uzun, A novel web scraping approach using the additional information obtained from web pages. IEEE Access 8, 61726–61740 (2020)

    Article  Google Scholar 

  35. T. Tun, K.M.M. Tun, Web content outlier mining using machine learning and mathematical approaches, in 2019 International Conference on Advanced Information Technologies (ICAIT), (Yangon, Myanmar, 2019), pp. 286–291

    Google Scholar 

  36. M.E. Şahin, S. Özdemir, Detection of malicious requests on Web logs using data mining techniques, in 2019 4th International Conference on Computer Science and Engineering (UBMK), (Samsun, Turkey, 2019), pp. 463–468

    Google Scholar 

  37. R. Tomar, R. Tiwari, Sarishma, Information delivery system for early forest fire detection using Internet of things, in Advances in Computing and Data Sciences. ICACDS 2019. Communications in Computer and Information Science, ed. by M. Singh, P. Gupta, V. Tyagi, J. Flusser, T. Ören, R. Kashyap, vol. 1045, (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-13-9939-8_42

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, D.K., Srivastava, R., Choudhury, T., Yadav, A.K. (2022). Computational Intelligence in Web Mining. In: Tomar, R., Hina, M.D., Zitouni, R., Ramdane-Cherif, A. (eds) Innovative Trends in Computational Intelligence. EAI/Springer Innovations in Communication and Computing. Springer, Cham. https://doi.org/10.1007/978-3-030-78284-9_9

Download citation

Publish with us

Policies and ethics