Abstract
Existing access control mechanisms are not sufficient for data protection. They are only preventive and cannot guarantee that data is accessed for the intended purpose. This paper proposes a novel approach for multi-perspective conformance checking which considers the control-flow, data and privacy perspectives of a business process simultaneously to find the context in which data is processed. In addition to detecting deviations in each perspective, the approach is able to detect hidden deviations where non-conformity relates to either a combination of two or all three aspects of a business process. The approach has been implemented in the open source ProM framework and was evaluated through controlled experiments using synthetic logs of a simulated real-life process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adriansyah, A., van Dongen, B.F., van der Aalst, W.M.P.: Towards robust conformance checking. In: zur Muehlen, M., Su, J. (eds.) BPM 2010. LNBIP, vol. 66, pp. 122–133. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20511-8_11
Aggarwal, C.C.: Data Mining. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14142-8
Alizadeh, M., Lu, X., Fahland, D., Zannone, N., van der Aalst, W.: Linking data and process perspectives for conformance analysis. Comput. Secur. 73, 172–193 (2018)
de Leoni, M., van der Aalst, W.M.P.: Aligning event logs and process models for multi-perspective conformance checking: an approach based on integer linear programming. In: Daniel, F., Wang, J., Weber, B. (eds.) Business Process Management, pp. 113–129. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013)
de Leoni, M., van der Aalst, W.M.P., van Dongen, B.F.: Data- and resource-aware conformance checking of business processes. In: Abramowicz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) Business Information Systems, pp. 48–59. Springer, Heidelberg (2012)
Mannhardt, F., de Leoni, M., Reijers, H.A., van der Aalst, W.M.P.: Balanced multi-perspective checking of process conformance. Computing 98(4), 407–437 (2015). https://doi.org/10.1007/s00607-015-0441-1
Mannhardt, F., Koschmider, A., Baracaldo, N., Weidlich, M., Michael, J.: Privacy-preserving process mining differential privacy for event logs. Bus. Inf. Syst. Eng. 61, 1–20 (2019)
Michael, J., Koschmider, A., Mannhardt, F., Baracaldo, N., Rumpe, B.: User-centered and privacy-driven process mining system design for IoT. In: Cappiello, C., Ruiz, M. (eds.) Information Systems Engineering in Responsible Information Systems, pp. 194–206. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_17
Perry, J.W., Kent, A., Berry, M.M.: Machine literature searching x. Machine language; factors underlying its design and development. Am. Docum. 6(4), 242–254 (1955)
Petković, M., Prandi, D., Zannone, N.: Purpose control: did you process the data for the intended purpose? In: Jonker, W., Petković, M. (eds.) SDM 2011. LNCS, vol. 6933, pp. 145–168. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23556-6_10
Pika, A., Wynn, M.T., Udiono, S., Ter Hofstede, A.H.M., van der Aalst, W.M.P., Reijers, H.A.: Privacy-preserving process mining in healthcare. Int. J. Environ. Res. Public Health 17 (2020)
Rafiei, M., van der Aalst, W.M.P.: Privacy-preserving data publishing in process mining. CoRR abs/2101.02627 (2021)
Zhang, S., Genga, L., Dekker, L., Nie, H., Lu, X., Duan, H., Kaymak, U.: Towards multi-perspective conformance checking with aggregation operations. In: Lesot, M.-J., et al. (eds.) IPMU 2020. CCIS, vol. 1237, pp. 215–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50146-4_17
Acknowledgement
The author has received funding within the BPR4GDPR project from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 787149.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Mozafari Mehr, A.S., de Carvalho, R.M., van Dongen, B. (2021). Detecting Privacy, Data and Control-Flow Deviations in Business Processes. In: Nurcan, S., Korthaus, A. (eds) Intelligent Information Systems. CAiSE 2021. Lecture Notes in Business Information Processing, vol 424. Springer, Cham. https://doi.org/10.1007/978-3-030-79108-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-79108-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-79107-0
Online ISBN: 978-3-030-79108-7
eBook Packages: Computer ScienceComputer Science (R0)